-
公开(公告)号:CN104850833B
公开(公告)日:2018-05-01
申请号:CN201510230759.3
申请日:2015-05-07
Applicant: 北京工业大学
IPC: G06K9/00
Abstract: 本发明提供了一种脑电混沌特性的分析方法,包括:对脑电信号进行滤波,并将滤波后的脑电信号分解为若干个子频段信号;提取各子频段信号的极值点和所述极值点对应的时间点,并根据所述极值点和所述时间点,生成单调振幅序列及单调周期序列;将所述单调振幅序列和单调周期序列组成向量序列,并对所述向量序列进行伪迹去除;从单调振幅和单调周期的两个维度将所述向量序列分为若干个子区间,获得每个向量分布在每个子区间的概率,并根据所述概率,获得所述脑电信号的振动熵;根据所述脑电信号的振动熵,分析所述脑电信号的混沌程度。本发明能够有效地反映脑电信号波形振动特征的分布特性。
-
公开(公告)号:CN104850833A
公开(公告)日:2015-08-19
申请号:CN201510230759.3
申请日:2015-05-07
Applicant: 北京工业大学
IPC: G06K9/00
CPC classification number: G06K9/00503 , G06K9/00523 , G06K9/00536
Abstract: 本发明提供了一种脑电混沌特性的分析方法,包括:对脑电信号进行滤波,并将滤波后的脑电信号分解为若干个子频段信号;提取各子频段信号的极值点和所述极值点对应的时间点,并根据所述极值点和所述时间点,生成单调振幅序列及单调周期序列;将所述单调振幅序列和单调周期序列组成向量序列,并对所述向量序列进行伪迹去除;从单调振幅和单调周期的两个维度将所述向量序列分为若干个子区间,获得每个向量分布在每个子区间的概率,并根据所述概率,获得所述脑电信号的振动熵;根据所述脑电信号的振动熵,分析所述脑电信号的混沌程度。本发明能够有效地反映脑电信号波形振动特征的分布特性。
-
公开(公告)号:CN106156737A
公开(公告)日:2016-11-23
申请号:CN201610523352.4
申请日:2016-07-05
Applicant: 北京工业大学
CPC classification number: G06K9/0051 , G06F17/16
Abstract: 本发明公开了一种基于二维空间的时间序列样本熵的计算方法及系统,涉及信号处理技术领域,本发明通过各步骤之间的配合,实现了样本熵的计算,能够应用于脑电复杂度计算,也可应用于其他存在局部极值点的振动序列或波形的复杂度计算。振动熵可作为对波形进行模式识别的特征指标,对不同复杂度波形进行分类。在信号处理时,信号中混有白噪声的振幅和周期是在一定范围内呈混沌的正态分布的,而信号的波形较为规律,所以本发明也可用于对信号中噪声的识别和剔除。
-
-