-
公开(公告)号:CN110555446B
公开(公告)日:2023-06-02
申请号:CN201910762295.9
申请日:2019-08-19
Applicant: 北京工业大学
IPC: G06V10/80 , G06V10/774 , G06V10/46 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明针对遥感影像场景的分类问题,提出了一种基于多尺度深度特征融合和迁移学习的遥感影像场景分类方法。本发明首先使用高斯金字塔算法获得多尺度的遥感影像,输入到全卷积神经网络中,提取到多尺度深度局部特征;然后将图像裁剪到CNN所需固定大小,输入网络中获得全连接层的全局特征,使用紧凑双线性池化操作编码多尺度深度局部特征和CNN获得的全局特征,通过融合两种深度特征共同表示遥感影像,增强特征之间的相互关系,使获得的特征更具有区分性;最后利用迁移学习技术,结合上述两种方法,对遥感影像场景进行分类。本发明卷积神经网络使用VGG16‑Net作为基础网络。
-
公开(公告)号:CN111666836B
公开(公告)日:2023-05-02
申请号:CN202010437866.4
申请日:2020-05-22
Applicant: 北京工业大学
IPC: G06V20/13 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: M‑F‑Y型轻量化卷积神经网络的高分辨率遥感影像目标检测方法属于遥感领域。本发明首先在轻量化卷积神经网络(CNN)模型MobileNetV3‑Small的基础上构建特征金字塔网络结构FPN,对高分辨率遥感影像提取并融合多尺度深度特征,联合利用YOLOv3tiny目标检测框架构建M‑F‑Y型轻量化卷积神经网络;之后通过构建互补注意力网络结构,抑制复杂背景同时提升对目标的空间位置信息的关注;最后使用基于迁移学习的滤波器嫁接策略训练模型,实现高分辨率遥感影像目标检测。本发明可以在提高高分辨率遥感影像目标检测准确率同时,通过更少的参数量以及更低的延迟减少对平台高速计算力的约束,为高分辨率遥感影像目标检测的实用化提供技术积累。
-
公开(公告)号:CN111666836A
公开(公告)日:2020-09-15
申请号:CN202010437866.4
申请日:2020-05-22
Applicant: 北京工业大学
Abstract: M-F-Y型轻量化卷积神经网络的高分辨率遥感影像目标检测方法属于遥感领域。本发明首先在轻量化卷积神经网络(CNN)模型MobileNetV3-Small的基础上构建特征金字塔网络结构FPN,对高分辨率遥感影像提取并融合多尺度深度特征,联合利用YOLOv3tiny目标检测框架构建M-F-Y型轻量化卷积神经网络;之后通过构建互补注意力网络结构,抑制复杂背景同时提升对目标的空间位置信息的关注;最后使用基于迁移学习的滤波器嫁接策略训练模型,实现高分辨率遥感影像目标检测。本发明可以在提高高分辨率遥感影像目标检测准确率同时,通过更少的参数量以及更低的延迟减少对平台高速计算力的约束,为高分辨率遥感影像目标检测的实用化提供技术积累。
-
公开(公告)号:CN110555446A
公开(公告)日:2019-12-10
申请号:CN201910762295.9
申请日:2019-08-19
Applicant: 北京工业大学
Abstract: 本发明针对遥感影像场景的分类问题,提出了一种基于多尺度深度特征融合和迁移学习的遥感影像场景分类方法。本发明首先使用高斯金字塔算法获得多尺度的遥感影像,输入到全卷积神经网络中,提取到多尺度深度局部特征;然后将图像裁剪到CNN所需固定大小,输入网络中获得全连接层的全局特征,使用紧凑双线性池化操作编码多尺度深度局部特征和CNN获得的全局特征,通过融合两种深度特征共同表示遥感影像,增强特征之间的相互关系,使获得的特征更具有区分性;最后利用迁移学习技术,结合上述两种方法,对遥感影像场景进行分类。本发明卷积神经网络使用VGG16-Net作为基础网络。
-
-
-