-
公开(公告)号:CN114266276A
公开(公告)日:2022-04-01
申请号:CN202111606161.1
申请日:2021-12-25
Applicant: 北京工业大学
Abstract: 一种基于通道注意力和多尺度时域卷积的运动想象脑电信号分类方法属于计算机软件领域。针对脑电信号信噪比低导致特征提取困难的问题,提出一种基于EEGNet改进的网络模型,简称“MCA‑EEGNet”。首先,使用并行多尺度的时间卷积层代替EEGNet模型中的普通卷积层,以更好地进行特征提取,从而提高分类准确率。同时添加通道注意力模块ECA,使网络训练时更加关注与输入数据相关度高的通道信息,从而进一步提高模型的鲁棒性。相比较EEGNet模型,本发明提出的分类方法更能有效地提升对运动想象脑电信号的特征提取和分类性能。
-
公开(公告)号:CN113269048A
公开(公告)日:2021-08-17
申请号:CN202110474878.9
申请日:2021-04-29
Applicant: 北京工业大学
Abstract: 本发明公开基于深度学习和混合噪声数据增强的运动想象脑电信号分类方法,针对脑电信号信噪比低、样本量较小的问题,将经验模态分解方法与白噪声数据增强方法结合,提出基于经验模态分解的混合噪声数据增强方法,通过提取原始信号的主要信息与白噪声进行混合,提高生成样本质量,从而训练出准确率更高、稳定性更强的分类器;将滤波器组的思想和浅层神经网络相结合,提出轻量、收敛速度快的FB‑Sinc‑ShallowNet方法,提高深度学习方法的分类准确率;应用欧式对齐方法对脑电信号进行预处理,减少不同时间得到的脑电信号之间的差异,降低分类难度,提高分类准确率。本发明能够提高运动想象脑电信号分类模型的预测准确率和稳定性。
-
公开(公告)号:CN114266276B
公开(公告)日:2024-05-31
申请号:CN202111606161.1
申请日:2021-12-25
Applicant: 北京工业大学
IPC: G06F18/213 , G06F18/24 , G06F18/214 , G06N3/0464 , A61B5/00 , A61B5/372
Abstract: 一种基于通道注意力和多尺度时域卷积的运动想象脑电信号分类方法属于计算机软件领域。针对脑电信号信噪比低导致特征提取困难的问题,提出一种基于EEGNet改进的网络模型,简称“MCA‑EEGNet”。首先,使用并行多尺度的时间卷积层代替EEGNet模型中的普通卷积层,以更好地进行特征提取,从而提高分类准确率。同时添加通道注意力模块ECA,使网络训练时更加关注与输入数据相关度高的通道信息,从而进一步提高模型的鲁棒性。相比较EEGNet模型,本发明提出的分类方法更能有效地提升对运动想象脑电信号的特征提取和分类性能。
-
公开(公告)号:CN113269048B
公开(公告)日:2024-05-28
申请号:CN202110474878.9
申请日:2021-04-29
Applicant: 北京工业大学
IPC: G06F18/24 , A61B5/372 , G06N3/0464 , G06N3/08
Abstract: 本发明公开基于深度学习和混合噪声数据增强的运动想象脑电信号分类方法,针对脑电信号信噪比低、样本量较小的问题,将经验模态分解方法与白噪声数据增强方法结合,提出基于经验模态分解的混合噪声数据增强方法,通过提取原始信号的主要信息与白噪声进行混合,提高生成样本质量,从而训练出准确率更高、稳定性更强的分类器;将滤波器组的思想和浅层神经网络相结合,提出轻量、收敛速度快的FB‑Sinc‑ShallowNet方法,提高深度学习方法的分类准确率;应用欧式对齐方法对脑电信号进行预处理,减少不同时间得到的脑电信号之间的差异,降低分类难度,提高分类准确率。本发明能够提高运动想象脑电信号分类模型的预测准确率和稳定性。
-
-
-