-
公开(公告)号:CN108171249A
公开(公告)日:2018-06-15
申请号:CN201810083376.1
申请日:2018-01-29
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于RGBD数据的局部描述子学习方法,包括设计卷积神经网络模型,使用随机梯度下降方法训练卷积神经网络,使用训练完成的卷积神经网络构造描述子。其中卷积神经网络模型包含两部分:第一部分为特征提取层,第二部分为特征融合层;其中特征提取层分为两个子网络:二维卷积子神经网络和三维卷积子神经网络;特征融合层为全连接神经网络;二维卷积子神经网络和三维卷积子神经网络是平行网络。本发明解决了RGBD数据融合方式提取特征点描述子的问题,相对于其他同类方法,本方法鲁棒性更强,匹配准确率更高。
-
公开(公告)号:CN108171249B
公开(公告)日:2022-03-08
申请号:CN201810083376.1
申请日:2018-01-29
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于RGBD数据的局部描述子学习方法,包括设计卷积神经网络模型,使用随机梯度下降方法训练卷积神经网络,使用训练完成的卷积神经网络构造描述子。其中卷积神经网络模型包含两部分:第一部分为特征提取层,第二部分为特征融合层;其中特征提取层分为两个子网络:二维卷积子神经网络和三维卷积子神经网络;特征融合层为全连接神经网络;二维卷积子神经网络和三维卷积子神经网络是平行网络。本发明解决了RGBD数据融合方式提取特征点描述子的问题,相对于其他同类方法,本方法鲁棒性更强,匹配准确率更高。
-