一种基于领域知识图谱的个性化文献推荐方法

    公开(公告)号:CN106960025A

    公开(公告)日:2017-07-18

    申请号:CN201710163216.3

    申请日:2017-03-19

    Abstract: 一种基于领域知识图谱的个性化文献推荐方法,涉及文献推荐技术领域。采用LDA模型构建知识图谱,并在此基础上,分别构建用户兴趣模型与文献模型,解决了词频统计方法不精确的问题;在建模的过程引入时间遗忘曲线函数,解决了用户兴趣变迁的问题;同时在建模过程中引入了激活扩散技术,解决了数据稀疏性的问题;在计算相似性的过程中采用基于知识距离的方法,有效的避免了元素个数匹配的强制性问题。将兴趣保持模型应用在文献推荐系统的用户建模中,考虑时间对用户短期兴趣变迁的影响,准确地量化用户当前兴趣。在用户建模与文献建模过程中引入激活扩散技术,有效的解决了数据的稀疏性问题。

    一种基于深度语义辨析的文本推荐方法

    公开(公告)号:CN107832312B

    公开(公告)日:2023-10-10

    申请号:CN201710000406.3

    申请日:2017-01-03

    Abstract: 本发明公开了基于深度语义辨析的文本推荐方法,根据深度语义网格模型自动抽取文本主题,根据主题情景语义辨析方法推理在不同文本背景下的情景语义,实现融合情景状态的文本主题树,根据用户实时情景状态为每篇文档构建出用户文本兴趣画像。在查询端针对用户情景状态的实时波动,对文本主题树进行情景语义筛选,将查询内容进行查询兴趣主题建模,根据激活扩散方法对用户直接兴趣主题进行二次潜在语义推理,计算主题的全局激活值,构建融合当前情景语义的用户查询兴趣画像。通过相似度计算方法为文档进行评分,根据评分高低生成文本推荐列表。

    一种基于分层机制构建多分类器融合模型的脑电情感识别方法

    公开(公告)号:CN106886792A

    公开(公告)日:2017-06-23

    申请号:CN201710053891.0

    申请日:2017-01-22

    Abstract: 本发明涉及一种基于分层机制构建多分类器融合模型的脑电情感识别方法,收集多导情感脑电数据,并对其进行分析处理,包括脑电预处理、特征提取及基于权重度量的通道选择,以构建情感脑电特征矩阵。将情感脑电特征矩阵按照电极位置进行通道划分,并针对每个通道执行最优化特征选择集成,构建多个单一情感分类模型。以各分类模型在针对同一个情感识别问题时获得的差异性和精确度作为评估准则,选择每个通道的最优单一情感分类模型,得到待融合的分类器集。利用各个最优单一情感分类模型的分类误差作为权重,并基于加权投票法构建情感识别融合模型。本发明利用多分类器融合解决了脑电样本空间上难以获得较高情感识别率的问题。

    一种基于分层机制构建多分类器融合模型的脑电情感识别方法

    公开(公告)号:CN106886792B

    公开(公告)日:2020-01-17

    申请号:CN201710053891.0

    申请日:2017-01-22

    Abstract: 本发明涉及一种基于分层机制构建多分类器融合模型的脑电情感识别方法,收集多导情感脑电数据,并对其进行分析处理,包括脑电预处理、特征提取及基于权重度量的通道选择,以构建情感脑电特征矩阵。将情感脑电特征矩阵按照电极位置进行通道划分,并针对每个通道执行最优化特征选择集成,构建多个单一情感分类模型。以各分类模型在针对同一个情感识别问题时获得的差异性和精确度作为评估准则,选择每个通道的最优单一情感分类模型,得到待融合的分类器集。利用各个最优单一情感分类模型的分类误差作为权重,并基于加权投票法构建情感识别融合模型。本发明利用多分类器融合解决了脑电样本空间上难以获得较高情感识别率的问题。

    一种基于领域知识图谱的个性化文献推荐方法

    公开(公告)号:CN106960025B

    公开(公告)日:2019-09-27

    申请号:CN201710163216.3

    申请日:2017-03-19

    Abstract: 一种基于领域知识图谱的个性化文献推荐方法,涉及文献推荐技术领域。采用LDA模型构建知识图谱,并在此基础上,分别构建用户兴趣模型与文献模型,解决了词频统计方法不精确的问题;在建模的过程引入时间遗忘曲线函数,解决了用户兴趣变迁的问题;同时在建模过程中引入了激活扩散技术,解决了数据稀疏性的问题;在计算相似性的过程中采用基于知识距离的方法,有效的避免了元素个数匹配的强制性问题。将兴趣保持模型应用在文献推荐系统的用户建模中,考虑时间对用户短期兴趣变迁的影响,准确地量化用户当前兴趣。在用户建模与文献建模过程中引入激活扩散技术,有效的解决了数据的稀疏性问题。

    一种基于深度语义辨析的文本推荐方法

    公开(公告)号:CN107832312A

    公开(公告)日:2018-03-23

    申请号:CN201710000406.3

    申请日:2017-01-03

    CPC classification number: G06F17/30864 G06F17/30637 G06F17/30731

    Abstract: 本发明公开了基于深度语义辨析的文本推荐方法,根据深度语义网格模型自动抽取文本主题,根据主题情景语义辨析方法推理在不同文本背景下的情景语义,实现融合情景状态的文本主题树,根据用户实时情景状态为每篇文档构建出用户文本兴趣画像。在查询端针对用户情景状态的实时波动,对文本主题树进行情景语义筛选,将查询内容进行查询兴趣主题建模,根据激活扩散方法对用户直接兴趣主题进行二次潜在语义推理,计算主题的全局激活值,构建融合当前情景语义的用户查询兴趣画像。通过相似度计算方法为文档进行评分,根据评分高低生成文本推荐列表。

Patent Agency Ranking