-
公开(公告)号:CN110398697B
公开(公告)日:2021-06-25
申请号:CN201910668127.3
申请日:2019-07-23
Applicant: 北京工业大学
IPC: G01R31/392 , G01R31/378 , G01R31/367 , G01R31/388
Abstract: 本发明公开了一种基于充电过程的锂离子健康状态估计方法在离线状态下,通过锂离子循环充放电实验获取电压、电流和时间等实验数据,从恒流充电过程中提取特征向量,特征向量为恒流充电过程中局部电压区间[Va,Vb]的时间间隔(恒流充电中,电压从Va到Vb所需要的时间)。并通过灰色关联度分析和高斯过程回归模型对提取的特征向量进行筛选,获取最优特征向量所属的电压区间和其训练模型。在线状态下,获取离线状态下得到的电压区间的时间间隔,作为输入特征向量,输入到已训练的高斯过程回归模型中,得到电池SOH。本发明不需要建立复杂的等效电路模型,通过数据驱动的方法,可在线对电池SOH进行估计,具有非常好的精确度。
-
公开(公告)号:CN110398697A
公开(公告)日:2019-11-01
申请号:CN201910668127.3
申请日:2019-07-23
Applicant: 北京工业大学
IPC: G01R31/392 , G01R31/378 , G01R31/367 , G01R31/388
Abstract: 本发明公开了一种基于充电过程的锂离子健康状态估计方法在离线状态下,通过锂离子循环充放电实验获取电压、电流和时间等实验数据,从恒流充电过程中提取特征向量,特征向量为恒流充电过程中局部电压区间[Va,Vb]的时间间隔(恒流充电中,电压从Va到Vb所需要的时间)。并通过灰色关联度分析和高斯过程回归模型对提取的特征向量进行筛选,获取最优特征向量所属的电压区间和其训练模型。在线状态下,获取离线状态下得到的电压区间的时间间隔,作为输入特征向量,输入到已训练的高斯过程回归模型中,得到电池SOH。本发明不需要建立复杂的等效电路模型,通过数据驱动的方法,可在线对电池SOH进行估计,具有非常好的精确度。
-