基于自组织径向基神经网络的溶解氧模型预测控制方法

    公开(公告)号:CN103064290A

    公开(公告)日:2013-04-24

    申请号:CN201310000516.1

    申请日:2013-01-01

    Abstract: 基于自组织径向基神经网络的溶解氧模型预测控制方法既属于控制领域,又属于水处理领域。针对污水处理过程高度非线性、强耦合性、时变、大滞后和不确定性严重等特点,该控制方法通过自动调整神经网络结构,提高神经网络的处理能力,建立污水处理过程预测模型,利用模型预测控制方法进行控制,从而提高控制效果,能够快速、准确地使溶解氧达到期望要求;解决了当前基于开关控制和PID控制自适应能力较差的问题;实验结果表明该方法能够快速、准确地控制溶解氧浓度,并具有较强的自适应能力,提高污水处理的质量和效率、降低污水处理成本,促进污水处理厂高效稳定运行。

    基于非线性模型预测的污水处理过程多目标控制方法

    公开(公告)号:CN103197544A

    公开(公告)日:2013-07-10

    申请号:CN201310059053.6

    申请日:2013-02-25

    CPC classification number: Y02W10/15

    Abstract: 针对污水处理过程高度非线性、强耦合性、时变、大滞后和不确定性严重等特点,本发明提出一种基于非线性模型预测的污水处理过程多目标控制方法,实现对污水处理过程中溶解氧(DO)和硝态氮(SNO)浓度的控制;该控制方法通过建立污水处理过程预测模型,利用非线性模型预测控制方法进行多目标控制,从而提高控制效果,能够快速、准确地使溶解氧和硝态氮达到期望要求;解决了当前基于开关控制和PID控制自适应能力较差的问题;实验结果表明该方法能够快速、准确地控制溶解氧和硝态氮浓度,具有较强的自适应能力,提高污水处理的质量和效率、降低污水处理成本,促进污水处理厂高效稳定运行。

    基于尖峰自组织径向基神经网络的污泥膨胀预测方法

    公开(公告)号:CN103942600B

    公开(公告)日:2017-05-31

    申请号:CN201410147250.8

    申请日:2014-04-12

    Abstract: 基于尖峰自组织径向基神经网络的污泥体积指数SVI的预测方法既属于控制科学与工程领域,又属于环境科学与工程领域。针对污水处理过程中污泥膨胀动力学特性复杂、关键参数难以测量等问题,本发明实现了污泥膨胀的准确预测;该预测方法通过同时调整径向基神经网络的结构和连接权值,提高神经网络的信息处理能力,提升污泥体积指数SVI的预测精度;实验结果表明该智能预测方法能够准确地预测污泥体积指数SVI,促进污水处理过程的高效稳定运行。

    基于非线性模型预测的污水处理过程多目标控制方法

    公开(公告)号:CN103197544B

    公开(公告)日:2015-06-17

    申请号:CN201310059053.6

    申请日:2013-02-25

    CPC classification number: Y02W10/15

    Abstract: 针对污水处理过程高度非线性、强耦合性、时变、大滞后和不确定性严重等特点,本发明提出一种基于非线性模型预测的污水处理过程多目标控制方法,实现对污水处理过程中溶解氧(DO)和硝态氮(SNO)浓度的控制;该控制方法通过建立污水处理过程预测模型,利用非线性模型预测控制方法进行多目标控制,从而提高控制效果,能够快速、准确地使溶解氧和硝态氮达到期望要求;解决了当前基于开关控制和PID控制自适应能力较差的问题;实验结果表明该方法能够快速、准确地控制溶解氧和硝态氮浓度,具有较强的自适应能力,提高污水处理的质量和效率、降低污水处理成本,促进污水处理厂高效稳定运行。

    基于自组织径向基神经网络的溶解氧模型预测控制方法

    公开(公告)号:CN103064290B

    公开(公告)日:2015-06-17

    申请号:CN201310000516.1

    申请日:2013-01-01

    Abstract: 基于自组织径向基神经网络的溶解氧模型预测控制方法既属于控制领域,又属于水处理领域。针对污水处理过程高度非线性、强耦合性、时变、大滞后和不确定性严重等特点,该控制方法通过自动调整神经网络结构,提高神经网络的处理能力,建立污水处理过程预测模型,利用模型预测控制方法进行控制,从而提高控制效果,能够快速、准确地使溶解氧达到期望要求;解决了当前基于开关控制和PID控制自适应能力较差的问题;实验结果表明该方法能够快速、准确地控制溶解氧浓度,并具有较强的自适应能力,提高污水处理的质量和效率、降低污水处理成本,促进污水处理厂高效稳定运行。

    基于尖峰自组织径向基神经网络的污泥膨胀预测方法

    公开(公告)号:CN103942600A

    公开(公告)日:2014-07-23

    申请号:CN201410147250.8

    申请日:2014-04-12

    Abstract: 基于尖峰自组织径向基神经网络的污泥体积指数SVI的预测方法既属于控制科学与工程领域,又属于环境科学与工程领域。针对污水处理过程中污泥膨胀动力学特性复杂、关键参数难以测量等问题,本发明实现了污泥膨胀的准确预测;该预测方法通过同时调整径向基神经网络的结构和连接权值,提高神经网络的信息处理能力,提升污泥体积指数SVI的预测精度;实验结果表明该智能预测方法能够准确地预测污泥体积指数SVI,促进污水处理过程的高效稳定运行。

Patent Agency Ranking