-
公开(公告)号:CN112734915A
公开(公告)日:2021-04-30
申请号:CN202110072362.1
申请日:2021-01-19
Applicant: 北京工业大学
Abstract: 本发明涉及一种基于深度学习的多视角立体视觉三维场景重建方法,现有的基于深度学习的重建方法,通过提取图像最后一层的特征以生成3D代价体,没有很好地利用浅层特征,这将丢失不同尺度的信息。而且,这些方法在深度图细化时,只考虑了参考图像本身对深度细化的效果,忽略了相邻图像的深度对深度图预测的贡献。为了解决上述问题,我们提出了多尺度特征提取与融合网络以及基于帧间相关性的深度图细化网络,来提升场景的预测精度和完整性。与现有的基于深度学习的方法相比,我们的方法能够更好地学习输入图像的上下文特征,重建出目标场景被遮挡和缺失的区域,能够更完整地恢复场景的三维信息,实现高精度的三维场景重建。