一种基于雷达视觉融合的车辆多属性识别方法

    公开(公告)号:CN113888754B

    公开(公告)日:2024-04-26

    申请号:CN202110959048.5

    申请日:2021-08-20

    Abstract: 一种基于雷达视觉融合的车辆多属性识别方法属于计算机视觉领域和智能交通领域。首先,根据数据集中雷达检测到的车辆信息(车辆与视觉摄像机之间的距离)提取车辆感兴趣区域,将其构建成单通道二值图像与当前的RGB图像融合成3通道图像后,将该融合图像送入车辆多属性识别一体化网络进行网络训练。训练完毕后,利用雷达和视觉相机提取隧道中运动车辆信息(车辆坐标、距离)生成3通道图像后,送入车辆多属性识别网络模型进行检测识别,输出车辆具体位置、型号和颜色。

    图像去雾方法、电子设备、存储介质和计算机程序产品

    公开(公告)号:CN114004760A

    公开(公告)日:2022-02-01

    申请号:CN202111234337.5

    申请日:2021-10-22

    Abstract: 本发明提供一种图像去雾方法、电子设备、存储介质和计算机程序产品,方法包括获取待去雾的目标雾霾图像;将目标雾霾图像输入至去雾模型,对目标雾霾图像进行去雾处理,获得去雾模型输出的目标去雾图像,去雾模型是基于不成对的清晰图像和雾霾图像构成的训练图像集,对待训练模型进行无监督训练得到的,待训练模型包括用于进行加雾转换处理和去雾转换处理的多尺度注意力模块,及用于区分训练图像集的真实图像和多尺度注意力模块的生成图像的判别器。本发明的去雾模型是基于不成对的清晰图像和雾霾图像构成的训练图像集进行无监督训练得到的,从而避免成对图像训练集对去雾模型训练的限制,进而提高图像去雾的性能。

    图像去雾方法、电子设备、存储介质和计算机程序产品

    公开(公告)号:CN114004760B

    公开(公告)日:2024-11-29

    申请号:CN202111234337.5

    申请日:2021-10-22

    Abstract: 本发明提供一种图像去雾方法、电子设备、存储介质和计算机程序产品,方法包括获取待去雾的目标雾霾图像;将目标雾霾图像输入至去雾模型,对目标雾霾图像进行去雾处理,获得去雾模型输出的目标去雾图像,去雾模型是基于不成对的清晰图像和雾霾图像构成的训练图像集,对待训练模型进行无监督训练得到的,待训练模型包括用于进行加雾转换处理和去雾转换处理的多尺度注意力模块,及用于区分训练图像集的真实图像和多尺度注意力模块的生成图像的判别器。本发明的去雾模型是基于不成对的清晰图像和雾霾图像构成的训练图像集进行无监督训练得到的,从而避免成对图像训练集对去雾模型训练的限制,进而提高图像去雾的性能。

    一种基于雷达视觉融合的车辆多属性识别方法

    公开(公告)号:CN113888754A

    公开(公告)日:2022-01-04

    申请号:CN202110959048.5

    申请日:2021-08-20

    Abstract: 一种基于雷达视觉融合的车辆多属性识别方法属于计算机视觉领域和智能交通领域。首先,根据数据集中雷达检测到的车辆信息(车辆与视觉摄像机之间的距离)提取车辆感兴趣区域,将其构建成单通道二值图像与当前的RGB图像融合成3通道图像后,将该融合图像送入车辆多属性识别一体化网络进行网络训练。训练完毕后,利用雷达和视觉相机提取隧道中运动车辆信息(车辆坐标、距离)生成3通道图像后,送入车辆多属性识别网络模型进行检测识别,输出车辆具体位置、型号和颜色。

Patent Agency Ranking