-
公开(公告)号:CN110555132A
公开(公告)日:2019-12-10
申请号:CN201910742757.0
申请日:2019-08-13
Applicant: 北京工业大学
IPC: G06F16/735 , G06N3/04 , G06N3/08
Abstract: 一种基于注意力模型的降噪自编码器的电影推荐方法,属于电影推荐技术领域。在现有的推荐算法中,自编码器推荐模型因运算速度较快,易于实现得到广泛应用,但评分矩阵稀疏时,推荐准确度将大大降低,且未曾考虑辅助信息与用户对于观看记录不同的注意度。为了解决上述问题,本方法将注意力模型与降噪自编码器相结合,利用注意力模型学习用户的偏好,融入降噪自编码器共同迭代更新参数,从而预测用户完整评分。本方法在预测评分准确度方面有明显提升。
-
公开(公告)号:CN110059220A
公开(公告)日:2019-07-26
申请号:CN201910292355.5
申请日:2019-04-12
Applicant: 北京工业大学
IPC: G06F16/735 , G06F16/9535
Abstract: 一种基于深度学习与贝叶斯概率矩阵分解的电影推荐算法,属于电影推荐技术领域。在众多推荐系统中,矩阵分解模型因为其准确高效,易于实现得到广泛应用,但矩阵分解原理是将用户评分矩阵分为用户与项目特征向量,当评分矩阵稀疏时,推荐准确度将大大降低,为了解决这个问题,本方法将深度学习与基于协同的推荐算法相结合,利用堆栈自编码器学习用户与项目的辅助信息,贝叶斯概率分解矩阵从辅助信息和原有的评分中预测用户偏好。本方法在预测评分准确度方面有明显提升。
-