-
公开(公告)号:CN103413275B
公开(公告)日:2016-05-18
申请号:CN201310320161.4
申请日:2013-07-26
Applicant: 北京工业大学
IPC: G06T5/00
Abstract: 基于梯度零范数最小化的Retinex夜间图像增强方法属于夜间彩色图像处理技术领域,其特征在于,是一种基于改进的中心环绕的Retinex算法的、同时通过最小化梯度幅值的零范数达到平滑图像的单幅夜间彩色图像增强方法,其中:引入x,y两个方向的辅助变量来控制两幅图像的相似度,引入平滑项的自适应参数作为迭代变量,以便在其达到设定的最大值时实现梯度幅值的零范数最小化,得到估计的照度图像,再通过直方图压缩且换算后得到反射图像,再将经过Gamma校正后的反射图像、原图像亮度分量相融合后,得到增强后的反射图像。本发明在增强图像的同时有效地抑制了噪声,减少了图像失真,对图像细节的恢复和对比度的增强取得了较好效果。
-
公开(公告)号:CN103413275A
公开(公告)日:2013-11-27
申请号:CN201310320161.4
申请日:2013-07-26
Applicant: 北京工业大学
IPC: G06T5/00
Abstract: 基于梯度零范数最小化的Retinex夜间图像增强方法属于夜间彩色图像处理技术领域,其特征在于,是一种基于改进的中心环绕的Retinex算法的、同时通过最小化梯度幅值的零范数达到平滑图像的单幅夜间彩色图像增强方法,其中:引入x,y两个方向的辅助变量来控制两幅图像的相似度,引入平滑项的自适应参数作为迭代变量,以便在其达到设定的最大值时实现梯度幅值的零范数最小化,得到估计的照度图像,再通过直方图压缩且换算后得到反射图像,再将经过Gamma校正后的反射图像、原图像亮度分量相融合后,得到增强后的反射图像。本发明在增强图像的同时有效地抑制了噪声,减少了图像失真,对图像细节的恢复和对比度的增强取得了较好效果。
-