-
公开(公告)号:CN109766992B
公开(公告)日:2020-12-04
申请号:CN201811490356.2
申请日:2018-12-06
Applicant: 北京工业大学
Abstract: 本发明公开了基于深度学习的工控异常检测及攻击分类方法,基于马氏距离的工控流量特征映射方法;该方法考虑到工业控制系统的实际情况,利用特征之间的马氏距离进行相关性度量,将原始的一维流数据转换为用作卷积神经网络模型输入的二维矩阵;通过分析现有异常检测方法的不足,使用卷积神经网络模型进行检测及分类。同时,考虑到工业控制系统各种特征之间关系的特点,提出了一种基于马氏距离的特征映射方法,将一维流数据转换为用作CNN输入的二维矩阵。该方法在2分类问题和多分类问题上均表现出优异的性能,满足SCADA异常检测和攻击分类的预期要求,为维护工业控制系统的安全提供了帮助。
-
公开(公告)号:CN107222491A
公开(公告)日:2017-09-29
申请号:CN201710481026.6
申请日:2017-06-22
Applicant: 北京工业大学
Abstract: 本发明公开一种基于工业控制网络变种攻击的入侵检测规则创建方法,通过分析ModbusTCP工控协议的脆弱性,设计总结了针对ModbusTCP异常流量的现有规则库,并结合目前工控网络常见的攻击变种方式,对遗传算法加以改进,来自动创建入侵检测规则,创建的规则根据其适应值来存储,能够有效的检测到变种攻击,扩充规则库,具有检测准确率高,实时性强的特点。
-
公开(公告)号:CN109766992A
公开(公告)日:2019-05-17
申请号:CN201811490356.2
申请日:2018-12-06
Applicant: 北京工业大学
Abstract: 本发明公开了基于深度学习的工控异常检测及攻击分类方法,基于马氏距离的工控流量特征映射方法;该方法考虑到工业控制系统的实际情况,利用特征之间的马氏距离进行相关性度量,将原始的一维流数据转换为用作卷积神经网络模型输入的二维矩阵;通过分析现有异常检测方法的不足,使用卷积神经网络模型进行检测及分类。同时,考虑到工业控制系统各种特征之间关系的特点,提出了一种基于马氏距离的特征映射方法,将一维流数据转换为用作CNN输入的二维矩阵。该方法在2分类问题和多分类问题上均表现出优异的性能,满足SCADA异常检测和攻击分类的预期要求,为维护工业控制系统的安全提供了帮助。
-
公开(公告)号:CN107222491B
公开(公告)日:2021-01-05
申请号:CN201710481026.6
申请日:2017-06-22
Applicant: 北京工业大学
Abstract: 本发明公开一种基于工业控制网络变种攻击的入侵检测规则创建方法,通过分析ModbusTCP工控协议的脆弱性,设计总结了针对ModbusTCP异常流量的现有规则库,并结合目前工控网络常见的攻击变种方式,对遗传算法加以改进,来自动创建入侵检测规则,创建的规则根据其适应值来存储,能够有效的检测到变种攻击,扩充规则库,具有检测准确率高,实时性强的特点。
-
-
-