-
公开(公告)号:CN111598864B
公开(公告)日:2023-07-25
申请号:CN202010405639.3
申请日:2020-05-14
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于多模态影像贡献度融合的肝细胞癌分化评估方法,首先,建立有效高维多模态影像数据的关联表示,即选择一种合适的特征提取方式对多模态MRI影像进行特征提取,同时,利用多模态MRI影像贡献度自适应加权机制,对九个模态的MRI影像进行任务贡献度学习,然后将任务贡献度学习所得的参数结果与多模态融合MRI数据经过特征提取器所得的特征进行特征层融合,最后,在网络顶端添加分类器,使用结合了贡献度的多模态MRI影像特征进行HCC分化程度的分级任务,以实现更为精准的预测。比起传统影像学诊断方法,本发明排除了主观因素的影响并同时考虑到了各个多模态MRI序列的诊断能力和贡献,从而使得到的结果更加准确和鲁棒。
-
公开(公告)号:CN111598864A
公开(公告)日:2020-08-28
申请号:CN202010405639.3
申请日:2020-05-14
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于多模态影像贡献度融合的肝细胞癌分化评估方法,首先,建立有效高维多模态影像数据的关联表示,即选择一种合适的特征提取方式对多模态MRI影像进行特征提取,同时,利用多模态MRI影像贡献度自适应加权机制,对九个模态的MRI影像进行任务贡献度学习,然后将任务贡献度学习所得的参数结果与多模态融合MRI数据经过特征提取器所得的特征进行特征层融合,最后,在网络顶端添加分类器,使用结合了贡献度的多模态MRI影像特征进行HCC分化程度的分级任务,以实现更为精准的预测。比起传统影像学诊断方法,本发明排除了主观因素的影响并同时考虑到了各个多模态MRI序列的诊断能力和贡献,从而使得到的结果更加准确和鲁棒。
-