一种基于血管内超声影像的血管三维可视化方法

    公开(公告)号:CN103268630B

    公开(公告)日:2015-11-18

    申请号:CN201310192588.0

    申请日:2013-05-22

    Abstract: 一种基于血管内超声影像的血管三维可视化方法,涉及计算机医学图像分析领域,其特征在于,首先,结合多图像平均去噪、中值滤波和小波降软阈值噪方法对图像序列进行降噪处理,该方法能减少图像噪声,很好的保留图像的重要细节信息,并且图像降噪效率高;其次,利用二次多项式拟合图像形变,实现图像配准,以补偿图像序列采集过程中产生的变形;再次,利用光线投射算法绘制出三维血管模型;最后利用切片重组方法实现对三维血管模型的任意角度平面剖切,显示血管内部结构信息,为病变分析创造了条件。

    基于内超声图像序列的血管壁边缘自动检测方法

    公开(公告)号:CN103455999B

    公开(公告)日:2018-05-08

    申请号:CN201210183069.3

    申请日:2012-06-05

    Abstract: 一种基于内超声图像序列的血管壁边缘自动提取方法,先粗检:利用血管壁处的信息特征,通过系列图像处理方法获取第一帧图像的初始边缘;再细检:改进GVF‑snake算法,引入自我调节因子和自适应法向外力,在增强边缘附近数据项的梯度影响,减少扩散引起的平滑效应的同时,能依据图像边缘和当前轮廓曲线相对位置来调整力的方向,扩大活动轮廓的捕捉范围,解决了由于无法到达局部区域而不能获得所需边缘的问题,使初始边缘精确收敛于实际管壁边缘。在变形过程中加入三次B样条,以减少控制点,提高收敛速度,光顺轮廓曲线,得到第一帧图像的最终边缘。由于相邻图像之间时间、空间相关性较大,将所获最终边缘作为下一帧图像初始边缘,重复上述细检工作,以此类推,得到序列图像的血管壁边缘。

    基于内超声图像序列的血管壁边缘自动检测方法

    公开(公告)号:CN103455999A

    公开(公告)日:2013-12-18

    申请号:CN201210183069.3

    申请日:2012-06-05

    Abstract: 一种基于内超声图像序列的血管壁边缘自动提取方法,先粗检:利用血管壁处的信息特征,通过系列图像处理方法获取第一帧图像的初始边缘;再细检:改进GVF-snake算法,引入自我调节因子和自适应法向外力,在增强边缘附近数据项的梯度影响,减少扩散引起的平滑效应的同时,能依据图像边缘和当前轮廓曲线相对位置来调整力的方向,扩大活动轮廓的捕捉范围,解决了由于无法到达局部区域而不能获得所需边缘的问题,使初始边缘精确收敛于实际管壁边缘。在变形过程中加入三次B样条,以减少控制点,提高收敛速度,光顺轮廓曲线,得到第一帧图像的最终边缘。由于相邻图像之间时间、空间相关性较大,将所获最终边缘作为下一帧图像初始边缘,重复上述细检工作,以此类推,得到序列图像的血管壁边缘。

    一种基于血管内超声影像的血管三维可视化方法

    公开(公告)号:CN103268630A

    公开(公告)日:2013-08-28

    申请号:CN201310192588.0

    申请日:2013-05-22

    Abstract: 一种基于血管内超声影像的血管三维可视化方法,涉及计算机医学图像分析领域,其特征在于,首先,结合多图像平均去噪、中值滤波和小波降软阈值噪方法对图像序列进行降噪处理,该方法能减少图像噪声,很好的保留图像的重要细节信息,并且图像降噪效率高;其次,利用二次多项式拟合图像形变,实现图像配准,以补偿图像序列采集过程中产生的变形;再次,利用光线投射算法绘制出三维血管模型;最后利用切片重组方法实现对三维血管模型的任意角度平面剖切,显示血管内部结构信息,为病变分析创造了条件。

Patent Agency Ranking