基于关键帧的多粒度特征学习步态识别方法

    公开(公告)号:CN116563937A

    公开(公告)日:2023-08-08

    申请号:CN202310106799.1

    申请日:2023-02-13

    Abstract: 本发明公开了基于关键帧的多粒度特征学习步态识别方法,该方法对步态序列内的步态轮廓图进行关键帧提取,选择出对识别结果影响大的步态轮廓图,将其组成为关键帧序列。关键帧序列与原步态序列分别进行步态特征的提取,最终融合成识别特征,使得提取的识别特征更具有判别性;在特征提取时关注时序信息,并且将全局特征与局部特征融合。该发明使用交叉熵损失与三元组损失优化识别特征以提高识别的准确率。本发明解决了过去基于序列的步态识别技术在识别时无差别化特征提取、局部特征提取不充分以及时序特征提取不充分的问题。本发明适用于行人的步态识别任务,识别准确率高,算法鲁棒性好。本发明在步态识别领域有着广泛的应用。

Patent Agency Ranking