-
公开(公告)号:CN117216631A
公开(公告)日:2023-12-12
申请号:CN202311124936.0
申请日:2023-09-03
Applicant: 北京工业大学
IPC: G06F18/24 , G06F18/214 , G06N3/042 , G06N3/0464
Abstract: 一种基于图神经网络的运动想象脑电信号分类方法,属于计算机软件领域。针对大脑区域处于非欧式空间的特点,提出一种基于图神经网络模型的Multi‑View Graph Convolution Net。首先,空间图卷积模块采用两个脑视图实现信息互补,使用自学习图构建功能脑视图,同时利用脑电电极的空间位置构建距离脑视图。然后,利用已构建的脑视图对输入的脑电信号进行特征提取,提取完成后将特征加权融合。空间图卷积模块能充分考虑脑电通道间的联系,提升脑电通道之间的信息交互。最后,利用时间卷积和空间卷积完成脑电信号的分类。本发明的分类方法能更有效地提取运动想象脑电信号的空间特征,进一步提高分类准确率。