-
公开(公告)号:CN111144329B
公开(公告)日:2023-07-25
申请号:CN201911386325.7
申请日:2019-12-29
Applicant: 北京工业大学
IPC: G06V20/52 , G06V20/70 , G06V10/26 , G06V10/52 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/0455 , G06N3/09
Abstract: 本发明公开一种基于多标签的轻量快速人群计数方法。根据感受野尺寸设计简单、高效的主干特征提取网络,内置密集上下文模块,保证了网络层的信息传递,提高了网络的表达能力;设计六个多尺度中间监督分支,使得网络更快、更稳定的收敛;设计了上采样模块,逐级提升分辨率,提高密度图的质量,以实现准确计数和精准定位;设计了三种标签,将基于密度的人群计数任务显地转化为前景与背景分割任务来辅助人群密度图的回归任务,同时实现密度图和分割图的预测,有效减小估计误差。在UCF_CC_50,ShanghaiTech和UCF‑QNFR数据集的测试结果表明,本发明的预测性能均优于当前主流算法,预测速度达到了实时,可以方便地部署到终端设备中。
-
公开(公告)号:CN109902602B
公开(公告)日:2021-04-30
申请号:CN201910118545.5
申请日:2019-02-16
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于对抗神经网络数据增强的机场跑道异物材料识别方法,针对机场跑道异物材料数据少,难采集,且材料物品的无固定形态,尺度多样的特点,本发明包括:设计逐分辨率提升的生成对抗神经网络,生成高质量的机场跑道异物材料数据,生成对抗神经网络由上海大学校园道路模拟与上海虹桥机场跑道异物材料分类数据集中的训练集驱动训练。利用训练好的对抗神经网络生成器,生成新的材料图像数据。结合原始数据与对抗神经网络生成数据,驱动基于特征通道注意力机制的残差神经网络进行分类训练,达到更高的机场跑道异物材料识别能力。
-
公开(公告)号:CN111368754B
公开(公告)日:2023-11-28
申请号:CN202010154681.2
申请日:2020-03-08
Applicant: 北京工业大学
IPC: G06V20/50 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/045 , G06N3/084
Abstract: 本发明公开了一种基于全局上下文信息的机场跑道异物检测方法,包括:将图片输入到所设计的卷积网络中,主干网络采用ResNeXt,通过多个并行路径来增加残差块的宽度,提高网络对小目标检测的准确率;在此过程中,加入全局上下文模块(GC block),通过自注意力机制捕捉图像的全局上下文信息;采用级联网络结构,设置三个不同的IoU阈值来进行训练,提高网络的泛化能力,进一步提高检测的准确率;最后输出检测的结果。在FOD(Foreign object debris)数据集上的实验结果表明,本发明的检测性能优于其他的算法。
-
公开(公告)号:CN111368754A
公开(公告)日:2020-07-03
申请号:CN202010154681.2
申请日:2020-03-08
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于全局上下文信息的机场跑道异物检测方法,包括:将图片输入到所设计的卷积网络中,主干网络采用ResNeXt,通过多个并行路径来增加残差块的宽度,提高网络对小目标检测的准确率;在此过程中,加入全局上下文模块(GC block),通过自注意力机制捕捉图像的全局上下文信息;采用级联网络结构,设置三个不同的IoU阈值来进行训练,提高网络的泛化能力,进一步提高检测的准确率;最后输出检测的结果。在FOD(Foreign object debris)数据集上的实验结果表明,本发明的检测性能优于其他的算法。
-
公开(公告)号:CN111144329A
公开(公告)日:2020-05-12
申请号:CN201911386325.7
申请日:2019-12-29
Applicant: 北京工业大学
Abstract: 本发明公开一种基于多标签的轻量快速人群计数方法。根据感受野尺寸设计简单、高效的主干特征提取网络,内置密集上下文模块,保证了网络层的信息传递,提高了网络的表达能力;设计六个多尺度中间监督分支,使得网络更快、更稳定的收敛;设计了上采样模块,逐级提升分辨率,提高密度图的质量,以实现准确计数和精准定位;设计了三种标签,将基于密度的人群计数任务显地转化为前景与背景分割任务来辅助人群密度图的回归任务,同时实现密度图和分割图的预测,有效减小估计误差。在UCF_CC_50,ShanghaiTech和UCF-QNFR数据集的测试结果表明,本发明的预测性能均优于当前主流算法,预测速度达到了实时,可以方便地部署到终端设备中。
-
公开(公告)号:CN109902602A
公开(公告)日:2019-06-18
申请号:CN201910118545.5
申请日:2019-02-16
Applicant: 北京工业大学
Abstract: 本发明公开了一种基于对抗神经网络数据增强的机场跑道异物材料识别方法,针对机场跑道异物材料数据少,难采集,且材料物品的无固定形态,尺度多样的特点,本发明包括:设计逐分辨率提升的生成对抗神经网络,生成高质量的机场跑道异物材料数据,生成对抗神经网络由上海大学校园道路模拟与上海虹桥机场跑道异物材料分类数据集中的训练集驱动训练。利用训练好的对抗神经网络生成器,生成新的材料图像数据。结合原始数据与对抗神经网络生成数据,驱动基于特征通道注意力机制的残差神经网络进行分类训练,达到更高的机场跑道异物材料识别能力。
-
-
-
-
-