-
公开(公告)号:CN109344266B
公开(公告)日:2021-08-06
申请号:CN201811106799.7
申请日:2018-09-21
Applicant: 北京大学深圳研究生院
IPC: G06F16/48 , G06F16/435
Abstract: 本发明公布了一种基于双语义空间的对抗性跨媒体检索方法,涉及模式识别、自然语言处理、多媒体检索等技术领域;包括:特征生成过程、双语义空间的构建过程和对抗性语义空间优化过程。本发明通过建立同构双语义空间,即文本子空间和图像子空间,实现在最大限度保留原有图像和文本信息的同时消除语义鸿沟;并通过对抗训练来优化同构子空间数据分布,挖掘多媒体数据中丰富的语义信息,在保证类别不变、模态可区分的情况下拟合语义空间中不同模态的向量分布。本发明方法能够有效的消除不同模态信息异构性,实现有效的跨媒体检索,在图文检索、模式识别等领域具有广泛的市场需求和应用前景。
-
公开(公告)号:CN106202413B
公开(公告)日:2018-11-20
申请号:CN201610544156.5
申请日:2016-07-11
Applicant: 北京大学深圳研究生院
IPC: G06F17/30
Abstract: 本发明公布了一种新的跨媒体检索方法,利用VGG提出的卷积神经网络VGG net提取图像特征,将VGG卷积神经网络中的第七层全连接层fc7通过ReLU激活函数之后的4096维特征作为图像特征;利用基于Word2vec的Fisher Vector提取文本特征,通过逻辑回归的方法对异构图像、文本特征进行语义匹配,通过基于逻辑回归的语义匹配方法找到图像、文本这两种异构特征之间的关联,从而实现跨媒体检索;本发明的特征提取方法能有效地表示图像和文本的深层语义,可提高跨媒体检索的准确度,从而大幅度提升跨媒体检索效果。
-
公开(公告)号:CN109344266A
公开(公告)日:2019-02-15
申请号:CN201811106799.7
申请日:2018-09-21
Applicant: 北京大学深圳研究生院
IPC: G06F16/48 , G06F16/435
Abstract: 本发明公布了一种基于双语义空间的对抗性跨媒体检索方法,涉及模式识别、自然语言处理、多媒体检索等技术领域;包括:特征生成过程、双语义空间的构建过程和对抗性语义空间优化过程。本发明通过建立同构双语义空间,即文本子空间和图像子空间,实现在最大限度保留原有图像和文本信息的同时消除语义鸿沟;并通过对抗训练来优化同构子空间数据分布,挖掘多媒体数据中丰富的语义信息,在保证类别不变、模态可区分的情况下拟合语义空间中不同模态的向量分布。本发明方法能够有效的消除不同模态信息异构性,实现有效的跨媒体检索,在图文检索、模式识别等领域具有广泛的市场需求和应用前景。
-
公开(公告)号:CN106202413A
公开(公告)日:2016-12-07
申请号:CN201610544156.5
申请日:2016-07-11
Applicant: 北京大学深圳研究生院
IPC: G06F17/30
CPC classification number: G06F17/30 , G06F17/30265 , G06F17/30247 , G06F17/30684 , G06F17/3069
Abstract: 本发明公布了一种新的跨媒体检索方法,利用VGG提出的卷积神经网络VGG net提取图像特征,将VGG卷积神经网络中的第七层全连接层fc7通过ReLU激活函数之后的4096维特征作为图像特征;利用基于Word2vec的Fisher Vector提取文本特征,通过逻辑回归的方法对异构图像、文本特征进行语义匹配,通过基于逻辑回归的语义匹配方法找到图像、文本这两种异构特征之间的关联,从而实现跨媒体检索;本发明的特征提取方法能有效地表示图像和文本的深层语义,可提高跨媒体检索的准确度,从而大幅度提升跨媒体检索效果。
-
-
-