一种基于字典匹配的图像超分辨率重建方法及装置

    公开(公告)号:CN105389778B

    公开(公告)日:2018-10-12

    申请号:CN201510741060.3

    申请日:2015-11-04

    Abstract: 本申请还提供一种基于字典匹配的图像超分辨率重建方法及装置,建立匹配字典库,将待重建图像输入多层线滤波器网络,提取待重建图像的局部特征,从匹配字典库中寻找与所述待重建图像的局部特征相似度最高的低分辨率图像块的局部特征,寻找在匹配字典库中,所述相似度最高的低分辨率图像块的局部特征所在联合样本的残差值,对相似度最高的低分辨率图像块的局部特征进行插值放大,加上残差值,获得重建后的高分辨率图像块。经过多层线滤波器网络提取的待重建图像的局部特征,精度更高,因此在后续与匹配字典库匹配时,匹配度更高,因而重建出的图像质量也跟好。因而,本申请可以大大提升重建的高分辨率图像的质量。

    基于混合框架的图像位深度扩展方法及装置

    公开(公告)号:CN107481278A

    公开(公告)日:2017-12-15

    申请号:CN201710717259.1

    申请日:2017-08-21

    Abstract: 本发明公布了一种基于混合框架的图像位深度扩展方法及装置,通过融合传统去带效应算法和基于深度网络的学习算法,可较好的移除图像平坦区域的不自然效应,同时更逼真的恢复所缺失的比特位的数值信息;包括图像平坦区域的提取、基于局部自适应像素值调整的平坦区域位深度扩展和基于卷积神经网络的非平坦区域位深度扩展。本发明采用基于学习的方法,通过训练有效的深度网络来解决逼真的恢复缺失比特位问题;同时,针对平坦区域使用简单而鲁棒的局部自适应像素值调整的方法,有效抑制平坦区域的带效应、振铃效应、以及平坦噪声等不自然效应,提升平坦区域的主观视觉质量。

    基于迭代投影重建的字典类图像超分辨率系统及方法

    公开(公告)号:CN105023240B

    公开(公告)日:2019-07-09

    申请号:CN201510398331.X

    申请日:2015-07-08

    CPC classification number: G06T3/00

    Abstract: 本发明提供一种基于迭代投影重建的字典类图像超分辨率系统及方法,所述系统包括:字典训练和投影矩阵预计算模块、基于投影矩阵的迭代投影超分辨率重建模块和基于全局约束的后处理模块。所述方法包括:步骤S1、字典的学习和投影矩阵的计算;步骤S2、基于投影矩阵的迭代投影超分辨率重建:对低分辨率图像块输入y,在字典中寻找与其最相似的原子,使用该原子的投影矩阵来对y进行超分辨率重建,对产生的残差向量进行再次投影重建获得残差向量的高分辨率重建,如此迭代重建,最后将全部重建成分加权相加作为最后重建的结果;步骤S3、对重建图像通过全局约束来消除不自然效应。本发明可有效提高字典类方法的计算速度并能够恢复图像高频细节信息。

    一种基于字典库的视频编解码方法及装置

    公开(公告)号:CN104053012B

    公开(公告)日:2017-08-29

    申请号:CN201410231054.9

    申请日:2014-05-28

    Abstract: 一种基于字典库的视频编解码方法及装置,该编码方法包括:将视频流中待编码的当前图像帧划分为若干图像块;采用纹理字典库的方式恢复当前图像帧前一帧的解码重建图像的编码失真信息,以得到恢复编码失真信息后的图像,并将恢复编码失真信息后的图像作为参考图像进行时域预测,得到待编码块的预测块;纹理字典库包括清晰图像字典和与所述清晰图像字典对应的失真图像字典;将待编码块与预测块相减得到残差块,对残差块进行处理得到视频码流。本申请提供的编解码方法及装置采用纹理字典库的方式恢复作为对待编码块(待解码块)进行预测的参考图像的编码失真信息,使得待编码块(待解码块)的预测块更加准确,从而提高编解码效率。

    一种基于分类字典库的超分辨率图像重构方法及装置

    公开(公告)号:CN104063855B

    公开(公告)日:2017-01-04

    申请号:CN201410230714.1

    申请日:2014-05-28

    Abstract: 本申请提供一种基于分类字典库的超分辨率图像重构装置,该装置可以从训练图像中选取第一局部块以及降采样后对应的第二局部块,提取相应特征,组合得到一组字典组,再对多组字典组按照LBS和SES的计算值作为分类标记进行分类并进行预训练,得到包含多个带分类标记的字典组的分类字典库。在重构图像时,同样提取待重构图像上局部块的局部特征,并将局部块的LBS和SES分类与分类字典库中各字典的LBS和SES分类相匹对,即可以快速获取到匹对的字典,最后利用匹对的字典对该待重构图像进行图像重构。从而,可以在恢复图像的高频信息的同时,提升图像的超分辨率重构的效率。

    基于迭代投影重建的字典类图像超分辨率系统及方法

    公开(公告)号:CN105023240A

    公开(公告)日:2015-11-04

    申请号:CN201510398331.X

    申请日:2015-07-08

    CPC classification number: G06T3/00 G06T3/4076

    Abstract: 本发明提供一种基于迭代投影重建的字典类图像超分辨率系统及方法,所述系统包括:字典训练和投影矩阵预计算模块、基于投影矩阵的迭代投影超分辨率重建模块和基于全局约束的后处理模块。所述方法包括:步骤S1、字典的学习和投影矩阵的计算;步骤S2、基于投影矩阵的迭代投影超分辨率重建:对低分辨率图像块输入y,在字典中寻找与其最相似的原子,使用该原子的投影矩阵来对y进行超分辨率重建,对产生的残差向量进行再次投影重建获得残差向量的高分辨率重建,如此迭代重建,最后将全部重建成分加权相加作为最后重建的结果;步骤S3、对重建图像通过全局约束来消除不自然效应。本发明可有效提高字典类方法的计算速度并能够恢复图像高频细节信息。

    一种基于字典库的视频编解码方法及装置

    公开(公告)号:CN104053012A

    公开(公告)日:2014-09-17

    申请号:CN201410231054.9

    申请日:2014-05-28

    Abstract: 一种基于字典库的视频编解码方法及装置,该编码方法包括:将视频流中待编码的当前图像帧划分为若干图像块;采用纹理字典库的方式恢复当前图像帧前一帧的解码重建图像的编码失真信息,以得到恢复编码失真信息后的图像,并将恢复编码失真信息后的图像作为参考图像进行时域预测,得到待编码块的预测块;纹理字典库包括清晰图像字典和与所述清晰图像字典对应的失真图像字典;将待编码块与预测块相减得到残差块,对残差块进行处理得到视频码流。本申请提供的编解码方法及装置采用纹理字典库的方式恢复作为对待编码块(待解码块)进行预测的参考图像的编码失真信息,使得待编码块(待解码块)的预测块更加准确,从而提高编解码效率。

    一种基于图像超分辨率的视频编解码方法及装置

    公开(公告)号:CN104244006B

    公开(公告)日:2019-02-26

    申请号:CN201410230514.6

    申请日:2014-05-28

    Abstract: 本申请提供的基于图像超分辨率的视频编解码方法及装置,本申请方法在对待编码和待编码的视频图像进行预测前,先对视频图像进行超分辨率插值处理,可以对图像进行放大及进行细节信息恢复,从而,在对待编码/待解码图像进行预测得到预测块时,相比现有技术利用线性插值对视频图像进行预测的方法,更能有效还原原图像,避免出现现有技术中预测块边缘模糊的问题,从而提升视频图像预测的准确性,进而提升视频图像的编码效率。

Patent Agency Ranking