-
公开(公告)号:CN114998281A
公开(公告)日:2022-09-02
申请号:CN202210686189.9
申请日:2022-06-16
Applicant: 北京大学深圳研究生院
Abstract: 本发明涉及一种基于点集表示的精确缺陷检测方法和系统。该方包括对检测目标采用点集进行表示;对于采用点集表示的检测目标,采用全局上下文特征金字塔网络来增强提取对比度明显的多尺度缺陷特征,采用感受野金字塔模块来获取和融合不同尺度大小的缺陷特征,采用自适应正负样本分配检测头来筛选用于学习训练的缺陷正样本;依据筛选得到的缺陷正样本以及提取的缺陷特征,生成准确的缺陷类别以及精确的缺陷位置,实现检测功能。在此基础上,采用深度可分离卷积来代替普通卷积对网络进行轻量优化,以提升检测速度。本发明解决了低对比度问题带来的检测模糊性问题,解决了缺陷尺寸变化大带来的单一性问题,并且避免了不平衡正负样本带来的训练问题。
-
公开(公告)号:CN114998281B
公开(公告)日:2025-04-15
申请号:CN202210686189.9
申请日:2022-06-16
Applicant: 北京大学深圳研究生院
IPC: G06T7/00 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种基于点集表示的精确缺陷检测方法和系统。该方包括对检测目标采用点集进行表示;对于采用点集表示的检测目标,采用全局上下文特征金字塔网络来增强提取对比度明显的多尺度缺陷特征,采用感受野金字塔模块来获取和融合不同尺度大小的缺陷特征,采用自适应正负样本分配检测头来筛选用于学习训练的缺陷正样本;依据筛选得到的缺陷正样本以及提取的缺陷特征,生成准确的缺陷类别以及精确的缺陷位置,实现检测功能。在此基础上,采用深度可分离卷积来代替普通卷积对网络进行轻量优化,以提升检测速度。本发明解决了低对比度问题带来的检测模糊性问题,解决了缺陷尺寸变化大带来的单一性问题,并且避免了不平衡正负样本带来的训练问题。
-