一种基于深度神经网络的开集类别发掘与扩展方法与装置

    公开(公告)号:CN107506799B

    公开(公告)日:2020-04-24

    申请号:CN201710780217.2

    申请日:2017-09-01

    Abstract: 一种基于深度神经网络的样本分类方法,使用包含已定义类别样本的样本集训练待扩展分类模型,获得分类阈值信息;将包含未定义类别样本的样本集送入所述待扩展分类模型,根据所述待扩展分类模型的分类阈值信息确定至少部分所述未定义类别样本;人工标注未定义类别样本;在所述深度神经网络的分类层中增加权值转移矩阵列数,以增加模型识别类别的总数,其中,增加的权值列中包含与全局分类相关的第一信息和与类别间联系相关的第二信息;用人工标注的未定义类别样本增量训练更新后的模型。通过修改深度神经网络分类层权值转移矩阵,从而扩展深度神经网络,使其识别类别数动态增加,从而能处理开集识别问题,更贴近真实识别场景下的应用。

    一种基于自动搜索与知识蒸馏的神经网络剪枝的压缩算法

    公开(公告)号:CN110175628A

    公开(公告)日:2019-08-27

    申请号:CN201910338123.9

    申请日:2019-04-25

    Abstract: 本发明涉及神经网络领域,特别涉及一种基于自动搜索与知识蒸馏的神经网络剪枝的压缩算法。具体包括以下步骤:步骤一、对于卷积神经网络,对神经网络l层搜索最佳剪枝比例pl;步骤二、对卷积神经网络的l层按照最佳剪枝比例进行剪枝操作;步骤三、对学生网络与教师网络输入训练集样本,前向传播;步骤四、对学生网络使用知识蒸馏算法,进行优化训练;步骤五、对学生网络进行反向传播更新参数,并且优化更新参数,然后跳转至步骤四。本发明实现卷积神经网络的剪枝与精度恢复,克服卷积神经网络压缩依赖原始数据集的问题。

    一种基于可形变结构的行人图像生成方法和装置

    公开(公告)号:CN110288677B

    公开(公告)日:2021-06-15

    申请号:CN201910425357.7

    申请日:2019-05-21

    Applicant: 北京大学

    Abstract: 本发明涉及图像生成领域,特别涉及一种基于可形变结构的行人图像生成方法和装置。具体包括以下步骤:步骤一、对行人图片和目标姿态图片按照部位结构进行分割操作,进行提取mask操作;步骤二、然后进行部位生成操作,得到部位生成图片;步骤三、对部位生成图片进行结构化合并操作,得到结构化合并图片;步骤四、进行整体生成操作,得到生成图片。本发明在考虑人体可形变结构的基础上,降低训练的代价,提升算法的性能。

    一种小样本视频识别方法

    公开(公告)号:CN108537119A

    公开(公告)日:2018-09-14

    申请号:CN201810184700.9

    申请日:2018-03-06

    Applicant: 北京大学

    Abstract: 一种小样本视频识别方法,基于深度神经网络与层级实时记忆,使用每类有多个训练样本的可见类与每类只有少量训练样本的不可见类,对不可见类的测试样本进行分类。首先,在可见类视频上进行深度网络预训练;随后,使用预训练得到的模型与可见类的视频对层级实时记忆网络进行训练,使网络可以在不可见类上进行重要程度的预测;同时,使用预训练得到的模型,在不可见类上对小样本进行距离学习,增大样本的类间距离,缩小样本的类内距离;最后,使用训练得到的层级实时记忆网络对测试视频选帧,使用距离学习得到的模型在选出来的帧上做分类任务。由此,本方法可以实现小样本下的视频识别,更贴近真实识别场景下的应用。

    神经网络表示标准框架结构

    公开(公告)号:CN108985448B

    公开(公告)日:2020-11-17

    申请号:CN201810575097.7

    申请日:2018-06-06

    Applicant: 北京大学

    Abstract: 本发明提供一种神经网络表示标准框架结构,包括:可互操作表示模块,通过对输入的神经网络进行转换得到可互操作的表示格式,其包含对神经网络的语法定义、支持的运算操作定义和权重格式定义;紧凑表示模块,将可互操作表示的神经网络通过神经网络压缩算法转换为序列化格式,其包含压缩后的神经网络的语法定义、支持的运算操作定义和权重格式定义;编解码表示模块,通过神经网络压缩算法将紧凑表示的神经网络转换为编解码表示,其包含压缩后的神经网络的语法定义、支持的运算操作定义和编解码后权重格式定义;封装表示模块,将安全信息和身份认证信息和神经网络一起封装,由此将神经网络转换为模型。

    神经网络表示标准框架结构

    公开(公告)号:CN108985448A

    公开(公告)日:2018-12-11

    申请号:CN201810575097.7

    申请日:2018-06-06

    Applicant: 北京大学

    CPC classification number: G06N3/0635 G06N3/0454

    Abstract: 本发明提供一种神经网络表示标准框架结构,包括:可互操作表示模块,通过对输入的神经网络进行转换得到可互操作的表示格式,其包含对神经网络的语法定义、支持的运算操作定义和权重格式定义;紧凑表示模块,将可互操作表示的神经网络通过神经网络压缩算法转换为序列化格式,其包含压缩后的神经网络的语法定义、支持的运算操作定义和权重格式定义;编解码表示模块,通过神经网络压缩算法将紧凑表示的神经网络转换为编解码表示,其包含压缩后的神经网络的语法定义、支持的运算操作定义和编解码后权重格式定义;封装表示模块,将安全信息和身份认证信息和神经网络一起封装,由此将神经网络转换为模型。

    三维卷积神经网络训练方法、视频异常事件检测方法及装置

    公开(公告)号:CN104281858B

    公开(公告)日:2018-07-10

    申请号:CN201410469780.4

    申请日:2014-09-15

    Abstract: 本发明实施例涉及视频图像技术领域,尤其涉及一种三维卷积神经网络训练方法、一种基于三维卷积神经网络的视频异常事件检测方法及装置,用以对拥挤人群场景下发生的异常事件进行检测。本发明实施例的方法中三维卷积神经网络正向传递过程中第N组卷积‑采样层中的卷积层上的每个卷积核对第N‑1组卷积‑采样层中的采样层的所有通道的所有特征图的数据进行卷积,由于最后一层卷积层对所有通道的所有特征图的数据进行卷积,从而可提取更具有表达能力的特征,从而可通过这些特征更好地描述拥挤人群场景下发生的异常事件,进而提高异常事件的检测的准确率。

    一种基于深度神经网络的开集类别发掘与扩展方法与装置

    公开(公告)号:CN107506799A

    公开(公告)日:2017-12-22

    申请号:CN201710780217.2

    申请日:2017-09-01

    Applicant: 北京大学

    Abstract: 一种基于深度神经网络的样本分类方法,使用包含已定义类别样本的样本集训练待扩展分类模型,获得分类阈值信息;将包含未定义类别样本的样本集送入所述待扩展分类模型,根据所述待扩展分类模型的分类阈值信息确定至少部分所述未定义类别样本;人工标注未定义类别样本;在所述深度神经网络的分类层中增加权值转移矩阵列数,以增加模型识别类别的总数,其中,增加的权值列中包含与全局分类相关的第一信息和与类别间联系相关的第二信息;用人工标注的未定义类别样本增量训练更新后的模型。通过修改深度神经网络分类层权值转移矩阵,从而扩展深度神经网络,使其识别类别数动态增加,从而能处理开集识别问题,更贴近真实识别场景下的应用。

    基于弱监督信息的深度学习图像目标映射及定位方法

    公开(公告)号:CN108764292B

    公开(公告)日:2022-03-18

    申请号:CN201810390879.3

    申请日:2018-04-27

    Applicant: 北京大学

    Abstract: 本发明提供了一种基于弱监督信息的深度学习图像目标映射及定位方法。该方法包括:使用带有类别标签的图像数据分别训练两个深度卷积神经网络框架,得到分类模型M1和分类模型M2,并获取全局带参可学习池化层参数;使用新的分类模型M2对测试图像进行特征提取,得到特征图,根据特征图通过特征类别映射及阈值法得到初步定位框;使用选择性搜索方法对测试图像进行候选区域提取,使用分类模型M1筛选类别出候选框集合;对初步定位框和候选框进行非极大值抑制处理,得到测试图像最终的目标定位框。本发明引入全局带参可学习池化层,能够学习得到关于目标类别j的更好的特征表达,并通过使用选择性特征类别映射的方式,有效得到图像中目标物体的位置信息。

    一种基于支持点学习的开集类别发掘方法与装置

    公开(公告)号:CN110807467A

    公开(公告)日:2020-02-18

    申请号:CN201910882778.2

    申请日:2019-09-18

    Applicant: 北京大学

    Abstract: 本发明涉及深度学习领域,特别涉及一种基于支持点学习的开集类别发掘方法与装置。包括:将样本输入训练好的深度神经网络获得样本特征,计算样本特征与每个类别的支持点集的距离,根据分类阈值和最大距离确定样本为未知样本或已定义样本,如果是已定义类别样本,对样本进行分类,如果是未知样本,对样本进行拒绝。本发明解决如今开集识别训练阶段不能引入未知信息的问题。

Patent Agency Ranking