一种采用MOCVD技术制备高亮度近紫外LED的方法

    公开(公告)号:CN105449052B

    公开(公告)日:2018-03-13

    申请号:CN201410421706.5

    申请日:2014-08-25

    Abstract: 本发明提供一种采用MOCVD技术制备具有非对称电流扩展层的高效率近紫外LED方法。通过设计新型的LED结构,改善水平方向电流扩展,以提高近紫外LED发光效率的方法。具体方案如下:在n‑GaN和InGaN/AlGaN多量子阱有源区之间生长非对称的n型电流扩展层。优化电流扩展层结构如下:(1)非对称Al组分和In组分以及n掺杂渐变的n型AlInGaN电流扩展层;(2)非对称Al组分和In组分以及n掺杂渐变的多周期n型AlInGaN/AlGaN超晶格或量子阱结构电流扩展层;(3)非对称Al组分和In组分以及n掺杂渐变的多周期n型InGaN/AlGaN超晶格或量子阱结构电流扩展层;(4)非对称Al组分In组分以及n掺杂渐变的多周期n型AlInGaN/GaN/AlGaN超晶格或量子阱结构;通过设计新型电流扩展层结构,有效提高近紫外LED发光效率。

    一种高亮度近紫外LED及其外延生长方法

    公开(公告)号:CN104485404A

    公开(公告)日:2015-04-01

    申请号:CN201410836566.8

    申请日:2014-12-29

    Applicant: 北京大学

    CPC classification number: H01L33/06 H01L33/325

    Abstract: 本发明公开了一种高亮度近紫外发光二极管及其外延生长方法。该LED结构从下向上依次为:图形化蓝宝石衬底、低温GaN成核层、高温非掺杂GaN缓冲层、n型GaN层、10至20个周期的n-Inx1Ga1-x1N/Aly1Ga1-y1N超晶格应力释放层、InxGa1-xN/AlyGa1-yN多量子阱有源区、低温p型AlInGaN层、高温p型GaN层和p型InGaN接触层,其中应力释放层随着超晶格周期数的增加可有效降低V型缺陷密度,缓解量子阱受到的应力,进而有效提高近紫外LED的发光效率。

    一种采用MOCVD技术在GaN衬底或GaN/Al2O3复合衬底上制备高亮度同质LED的方法

    公开(公告)号:CN105449051B

    公开(公告)日:2018-03-27

    申请号:CN201410421676.8

    申请日:2014-08-25

    Abstract: 发明提供一种采用MOCVD技术在GaN衬底或GaN/Al2O3复合衬底上制备具有新型空穴扩展层结构的同质LED的方法。具体方案:在InGaN/GaN多量子阱有源层和p‑GaN层之间,优化设计其中Al组分、In组分以及p型掺杂浓度随生长厚度或周期增加而梯度变化的空穴扩展层:如组分及掺杂渐变的单层p‑AlInGaN空穴扩展层;或多周期组分及掺杂渐变p‑AlInGaN/AlGaN超晶格结构空穴扩展层;或多周期组分及掺杂渐变p‑InGaN/GaN/AlGaN超晶格结构空穴扩展层;或多周期组分及掺杂渐变p‑AlInGaN/InGaN/AlGaN超晶格结构空穴扩展层;通过优化生长所述空穴扩展层的方法,改善LED电流扩展效果,有效提高同质LED发光效率。本发明看好其应用前景。

    一种高亮度近紫外LED及其制备方法

    公开(公告)号:CN104538521B

    公开(公告)日:2017-03-29

    申请号:CN201410836533.3

    申请日:2014-12-29

    Applicant: 北京大学

    Abstract: 本发明公开了一种高亮度近紫外发光二极管及其制备方法,属于半导体光电子技术领域。该LED结构结构从下向上依次为:图形化蓝宝石衬底、低温GaN成核层、高温非掺杂GaN缓冲层、n型GaN层、n-Inx1Ga1-x1N/Aly1Ga1-y1N量子阱结构的应力释放层、低温n-Aly1Ga1-y1N电流扩展层、InxGa1-xN/AlyGa1-yN多量子阱发光层、p-Aly2Inx2Ga1-x2-y2N电子阻挡层、高温p型GaN层和p型InGaN接触层。本发明通过优化n型应力释放层和n型电流扩展层,可改善近紫外LED电流扩展效果,进而有效提高近紫外LED的发光效率。

    一种在Si衬底上采用碳纳米管作为周期性介质掩膜制备低位错密度GaN薄膜的方法

    公开(公告)号:CN105609402A

    公开(公告)日:2016-05-25

    申请号:CN201410686083.4

    申请日:2014-11-25

    Abstract: 本发明提供一种在Si衬底上采用碳纳米管作为周期性介质掩膜制备低位错密度GaN薄膜的方法:使用三甲基镓(TMGa)、三甲基铝(TMAl)作为III族源,氨气(NH3)作为V族源,硅烷(SiH4)作为n型掺杂源,在Si衬底上先生长高温AlN成核层后,在其上面制备两层或三层或四层单向(交叉)碳纳米管周期性介质掩膜图形化AlN/Si衬底层;其后,采用选区外延方法,在该图形化AlN/Si衬底模板上生长低Al组分的AlxGa1-xN合并层(0.3~0.5微米厚,Al组分x≤0.25);然后,分别生长四层GaN,在其两GaN层间插入三层其Al组分y随层次增加而递减的低温AlyGa1-yN应力调控层(1≥y≥0.5);从而获得低位错密度、无裂纹、高晶体质量的GaN/Si薄膜(2微米厚,其(002)面半峰宽为500aresec、(102)面半峰宽为610aresec)。

    一种采用MOCVD技术在GaN衬底或GaN/Al2O3复合衬底上制备高亮度同质LED的方法

    公开(公告)号:CN105449051A

    公开(公告)日:2016-03-30

    申请号:CN201410421676.8

    申请日:2014-08-25

    Abstract: 发明提供一种采用MOCVD技术在GaN衬底或GaN/Al2O3复合衬底上制备具有新型空穴扩展层结构的同质LED的方法。具体方案:在InGaN/GaN多量子阱有源层和p-GaN层之间,优化设计其中Al组分、In组分以及p型掺杂浓度随生长厚度或周期增加而梯度变化的空穴扩展层:如组分及掺杂渐变的单层p-AlInGaN空穴扩展层;或多周期组分及掺杂渐变p-AlInGaN/AlGaN超晶格结构空穴扩展层;或多周期组分及掺杂渐变p-InGaN/GaN/AlGaN超晶格结构空穴扩展层;或多周期组分及掺杂渐变p-AlInGaN/InGaN/AlGaN超晶格结构空穴扩展层;通过优化生长所述空穴扩展层的方法,改善LED电流扩展效果,有效提高同质LED发光效率。本发明看好其应用前景。

    一种高亮度近紫外LED及其外延生长方法

    公开(公告)号:CN104485404B

    公开(公告)日:2017-07-28

    申请号:CN201410836566.8

    申请日:2014-12-29

    Applicant: 北京大学

    Abstract: 本发明公开了一种高亮度近紫外发光二极管及其外延生长方法。该LED结构结构从下向上依次为:图形化蓝宝石衬底、低温GaN成核层、高温非掺杂GaN缓冲层、n型GaN层、10至20个周期的n‑Inx1Ga1‑x1N/Aly1Ga1‑y1N超晶格应力释放层、InxGa1‑xN/AlyGa1‑yN多量子阱有源区、低温p型AlInGaN层、高温p型GaN层和p型InGaN接触层,其中应力释放层随着超晶格周期数的增加可有效降低V型缺陷密度,缓解量子阱受到的应力,进而有效提高近紫外LED的发光效率。

    一种在Si衬底上采用碳纳米管作为周期性介质掩膜制备低位错密度GaN薄膜的方法

    公开(公告)号:CN105609402B

    公开(公告)日:2018-03-27

    申请号:CN201410686083.4

    申请日:2014-11-25

    Abstract: 本发明提供一种在Si衬底上采用碳纳米管作为周期性介质掩膜制备低位错密度GaN薄膜的方法:使用三甲基镓(TMGa)、三甲基铝(TMAl)作为III族源,氨气(NH3)作为V族源,硅烷(SiH4)作为n型掺杂源,在Si衬底上先生长高温AlN成核层后,在其上面制备两层或三层或四层单向(交叉)碳纳米管周期性介质掩膜图形化AlN/Si衬底层;其后,采用选区外延方法,在该图形化AlN/Si衬底模板上生长低Al组分的AlxGa1‑xN合并层(0.3~0.5微米厚,Al组分x≤0.25);然后,分别生长四层GaN,在其两GaN层间插入三层其Al组分y随层次增加而递减的低温AlyGa1‑yN应力调控层(1≥y≥0.5);从而获得低位错密度、无裂纹、高晶体质量的GaN/Si薄膜(2微米厚,其(002)面半峰宽为500aresec、(102)面半峰宽为610aresec)。

    一种在Si衬底上制备无裂纹GaN薄膜的方法

    公开(公告)号:CN105702826A

    公开(公告)日:2016-06-22

    申请号:CN201410687721.4

    申请日:2014-11-25

    Abstract: 本发明提供一种在Si衬底上制备无裂纹GaN薄膜的方法。先在Si衬底上采用金属有机化学气相外延技术生长高温AlN成核层;然后,依次生长三层其Al组分梯度渐变的应力调控层:第一层为5个周期(30nm)AlxGa1-xN/(30nm)Al0.5Ga0.5N应力调控层(其中Al组分x从100%变化到50%,插入层厚度0.3微米);第二层为4个周期(25nm)AlyGa1-yN/(25nm)Al0.2Ga0.8N应力调控层(其中Al组分y从50%变化到20%,插入层总厚度0.2微米);第三层为3个周期(20nm)AlzGa1-zN/(20nm)GaN应力调控层(其中Al组分z从20%变化到零,插入层厚度0.12微米);在此基础上,生长GaN层(薄膜厚1-1.5微米);最终,得到无裂纹、高品质的Si衬底GaN薄膜,可供制备AlGaN/GaN HEMT器件等。

Patent Agency Ranking