-
公开(公告)号:CN115984124A
公开(公告)日:2023-04-18
申请号:CN202211543963.7
申请日:2022-11-29
Applicant: 北京大学
IPC: G06T5/00 , G06T3/40 , G06V10/30 , G06V10/774 , G06V10/82 , G06F18/214 , G06N3/08 , G06N3/0464
Abstract: 本发明公开了一种神经形态脉冲信号去噪和超分辨方法及装置,通过在显示屏中设置不同分辨率的相同视频,并用脉冲相机来拍摄显示屏,从而得到不同分辨率的真实脉冲数据对,用实拍数据集作为训练集,避免了由于仿真数据与真实数据的差距太大而导致训练后的网络对真实数据不兼容的问题,解决了脉冲信号仿真器无法准确生成事件数据的问题。同时使用深度学习的方法,利用3D‑UNet网络模型来学习脉冲信号去噪和超分辨率重建的端到端的映射模型,在输入只有脉冲序列的情况下,就可以有效实现对事件的去噪和超分辨任务,避免了现有方法依赖视频帧和IMU信息,省去了求解光流信息的过程,节省了大量的运行时间,极大的提升了处理速度。