-
公开(公告)号:CN113505642A
公开(公告)日:2021-10-15
申请号:CN202110627547.4
申请日:2021-06-04
Applicant: 北京大学
Abstract: 本发明公开了一种提升目标重识别泛化性的方法、装置、设备及存储介质,方法包括:将未知领域的样本图像数据输入预训练的多领域专家混合模型,得到每个领域的专属特征以及所述样本图像的查询特征;计算所述查询特征与所述专属特征的平均相似度,根据所述平均相似度确定所述样本图像与每个领域的相关性;根据领域相关性对每个领域的专属特征进行加权聚合,得到聚合特征;根据所述聚合特征对所述样本图像进行目标重识别。根据本公开实施例提供的提升目标重识别泛化性的方法,通过利用元学习和多领域专家混合模型,对已知领域数据特征进行动态地聚合以生成在未知领域数据上具有强泛化能力的特征,从而提升目标识别领域的泛化性。
-
公开(公告)号:CN113505642B
公开(公告)日:2023-10-24
申请号:CN202110627547.4
申请日:2021-06-04
Applicant: 北京大学
IPC: G06V40/10 , G06V20/52 , G06V10/764 , G06V10/80
Abstract: 本发明公开了一种提升目标重识别泛化性的方法、装置、设备及存储介质,方法包括:将未知领域的样本图像数据输入预训练的多领域专家混合模型,得到每个领域的专属特征以及所述样本图像的查询特征;计算所述查询特征与所述专属特征的平均相似度,根据所述平均相似度确定所述样本图像与每个领域的相关性;根据领域相关性对每个领域的专属特征进行加权聚合,得到聚合特征;根据所述聚合特征对所述样本图像进行目标重识别。根据本公开实施例提供的提升目标重识别泛化性的方法,通过利用元学习和多领域专家混合模型,对已知领域数据特征进行动态地聚合以生成在未知领域数据上具有强泛化能力的特征,从而提升目标识别领域的泛化性。
-