-
公开(公告)号:CN108959603B
公开(公告)日:2022-03-29
申请号:CN201810769873.7
申请日:2018-07-13
Applicant: 北京印刷学院
IPC: G06F16/9535 , G06N3/02
Abstract: 本发明提供一种基于深度神经网络的个性化推荐系统及方法,通过融合深度神经网络的候选集生成模块,结合多用户和多项目特征进行深度神经网络学习生成候选集,以及基于融合深度神经网络的排序集生成模块,结合多用户和多项目特征对候选集进行深度神经网络学习和评分,生成包含个性化推荐内容更优的排序集,最后基于协同过滤算法和排序集进行进一步的个性化推荐,得到最终的推荐列表。通过上述方式结合多用户和多项目提升推荐过程的精准度,并结合协同过滤算法实现精准个性化推荐。从而提高了个性化推荐效率和用户使用感受。
-
公开(公告)号:CN108959603A
公开(公告)日:2018-12-07
申请号:CN201810769873.7
申请日:2018-07-13
Applicant: 北京印刷学院
CPC classification number: G06N3/02
Abstract: 本发明提供一种基于深度神经网络的个性化推荐系统及方法,通过融合深度神经网络的候选集生成模块,结合多用户和多项目特征进行深度神经网络学习生成候选集,以及基于融合深度神经网络的排序集生成模块,结合多用户和多项目特征对候选集进行深度神经网络学习和评分,生成包含个性化推荐内容更优的排序集,最后基于协同过滤算法和排序集进行进一步的个性化推荐,得到最终的推荐列表。通过上述方式结合多用户和多项目提升推荐过程的精准度,并结合协同过滤算法实现精准个性化推荐。从而提高了个性化推荐效率和用户使用感受。
-