一种乳腺图像分类模型的训练方法、装置及电子设备

    公开(公告)号:CN117809087A

    公开(公告)日:2024-04-02

    申请号:CN202311766369.9

    申请日:2023-12-20

    Abstract: 本公开提供了一种乳腺图像分类模型的训练方法、装置及电子设备,方法包括:获取有标签乳腺图像数据和无标签乳腺图像数据作为训练样本,基于有标签乳腺图像数据对模型进行训练,确定第一损失值,之后通过模型对无标签乳腺图像数据进行分类预测,得到无标签乳腺图像数据的预测概率和对应的伪标签,确定无标签乳腺图像数据的损失权重,根据损失权重确定第二损失值,最终确定乳腺图像分类模型的总损失值,判断总损失值是否满足预设要求,确定是否继续对模型进行迭代训练。应用本方法,通过确定无标签乳腺图像数据的损失权重,确定模型的第二损失值,缓解半监督学习中生成的伪标签可能带来的噪声,提高了无标签数据的利用率。

    一种乳腺图像分类模型的训练方法、装置及电子设备

    公开(公告)号:CN117809087B

    公开(公告)日:2025-02-21

    申请号:CN202311766369.9

    申请日:2023-12-20

    Abstract: 本公开提供了一种乳腺图像分类模型的训练方法、装置及电子设备,方法包括:获取有标签乳腺图像数据和无标签乳腺图像数据作为训练样本,基于有标签乳腺图像数据对模型进行训练,确定第一损失值,之后通过模型对无标签乳腺图像数据进行分类预测,得到无标签乳腺图像数据的预测概率和对应的伪标签,确定无标签乳腺图像数据的损失权重,根据损失权重确定第二损失值,最终确定乳腺图像分类模型的总损失值,判断总损失值是否满足预设要求,确定是否继续对模型进行迭代训练。应用本方法,通过确定无标签乳腺图像数据的损失权重,确定模型的第二损失值,缓解半监督学习中生成的伪标签可能带来的噪声,提高了无标签数据的利用率。

Patent Agency Ranking