基于深度学习模型的信访要素抽取方法及抽取系统

    公开(公告)号:CN113806548A

    公开(公告)日:2021-12-17

    申请号:CN202111372528.8

    申请日:2021-11-19

    Abstract: 本发明公开了一种基于深度学习模型的信访要素抽取方法、抽取系统、电子设备及计算机可读存储介质,包括:提取信访件的文本内容中目标文本数据;对目标文本数据进行预处理,生成针对多种深度学习模型的对应的数据;将预处理后的多种文本数据中的关于信访人的相关信息、受信人相关信息以及信访诉求的文本数据输入到要素抽取模型中进行要素抽取;将关于信访内容以及信访目的的文本数据输入到文本分类模型中进行分类,分别得到要素抽取的结果以及文本分类的结果;将得到的要素抽取的结果以及文本分类的结果推送到终端设备。该方法采用多种模型,能适应不同类型信访件,具有普遍性,并且无需人工进行繁琐要素抽取工作,提高信访人员工作效率。

Patent Agency Ranking