-
公开(公告)号:CN111160268B
公开(公告)日:2024-03-29
申请号:CN201911402471.4
申请日:2019-12-30
Applicant: 北京化工大学
Abstract: 本发明公开了一种基于多任务学习的多角度SAR目标识别方法,本发明构建了两种学习任务用以提升神经网络对于SAR目标特征的感知能力,一个是用以判断SAR目标角度的角度估计辅助任务,一个是在角度估计基础上进行目标识别的主任务。辅助任务充分利用了SAR图像数据中的角度特征,使用多任务学习中的参数共享学习机制来提升网络特征提取层对于目标散射特征、方位敏感特征的提取能力,为主任务的学习提供先验知识支撑。共享网络层基于深度残差学习框架进行设计,针对两种学习任务引入Softmax Loss和Center Loss两种损失函数共同监督训练,提高小样本情况下的合成孔径雷达目标识别效率。
-
公开(公告)号:CN111160268A
公开(公告)日:2020-05-15
申请号:CN201911402471.4
申请日:2019-12-30
Applicant: 北京化工大学
Abstract: 本发明公开了一种基于多任务学习的多角度SAR目标识别方法,本发明构建了两种学习任务用以提升神经网络对于SAR目标特征的感知能力,一个是用以判断SAR目标角度的角度估计辅助任务,一个是在角度估计基础上进行目标识别的主任务。辅助任务充分利用了SAR图像数据中的角度特征,使用多任务学习中的参数共享学习机制来提升网络特征提取层对于目标散射特征、方位敏感特征的提取能力,为主任务的学习提供先验知识支撑。共享网络层基于深度残差学习框架进行设计,针对两种学习任务引入Softmax Loss和Center Loss两种损失函数共同监督训练,提高小样本情况下的合成孔径雷达目标识别效率。
-