-
-
公开(公告)号:CN116633560A
公开(公告)日:2023-08-22
申请号:CN202310697598.3
申请日:2023-06-13
Abstract: 本发明提供了一种面向区块链组播交易模式的隐私保护与监管方法。抽象出了区块链组播交易模式下的密态可验证可监管交易模型,在该模型下执行以下算法:初始化算法;采用自主混淆的身份隐藏策略,分别执行一次性地址派生算法和可链接可撤销环签名算法对交易接收方和交易发送方身份隐私保护的同时实现监管;采用TwistedElGamal同态加密方案及零知识证明技术的交易内容隐藏、验证及监管算法;环签名及零知识证明验证算法;监管者执行交易监管算法;接收方判别算法。本发明方法在组播交易模式下保护交易发送方和交易接收方身份隐私的同时监管者能够恢复交易方的真实身份;实现交易内容的隐私保护及验证的同时监管者能够恢复交易明文内容。
-
公开(公告)号:CN118233190A
公开(公告)日:2024-06-21
申请号:CN202410387088.0
申请日:2024-04-01
Applicant: 北京交通大学
IPC: H04L9/40 , G06N3/098 , G06F18/214
Abstract: 本发明提供一种联邦推荐无目标投毒攻击防御方法、装置和系统,其中方法包括:服务器随机初始一组用户嵌入以近似良性用户嵌入分布;服务器依据近似的用户嵌入组及不同用户上传的更新信息,依次计算项目的推荐评分、评分变化速度、项目统计频数,并由此推断可能的流行项目;服务器采用“多轮综合评价”原则,依据用户与全局模型近次在流行项目上的评分行为一致性共同量化其在本轮的贡献值;服务器计算动态阈值并据此剔除贡献小于这一阈值的异常用户;服务器将剩余用户上传的梯度作为正常梯度参与后续聚合更新,并将聚合更新后的结果作为新一轮参数发送至用户;重复该过程直至模型收敛。本发明有效提高了联邦推荐模型对无目标投毒攻击的抵抗能力。
-
公开(公告)号:CN117272370B
公开(公告)日:2024-03-22
申请号:CN202311189893.4
申请日:2023-09-14
Applicant: 北京交通大学
IPC: G06F21/62 , G06F16/9536 , G06N3/0442 , G06N3/08
Abstract: 本说明书实施例提供了一种基于用户轨迹序列的下一个兴趣点隐私保护推荐方法及系统,其中,方法包括:捕捉用户签到行为中复杂的序列转移模式和动态偏好,根据所述序列转移模式和动态偏好,基于序列模型建立融合用户长短期偏好特征的轨迹预测模型;将所述轨迹预测模型设置为联邦推荐训练形式,在轨迹数据不出当前地区范围的前提下,通过协调多个用户设备共同优化所述轨迹预测模型,并在优化过程中通过差分隐私机制对模型参数进行加噪保护。
-
公开(公告)号:CN116962085A
公开(公告)日:2023-10-27
申请号:CN202311213109.9
申请日:2023-09-20
Applicant: 北京交通大学
Abstract: 本说明书实施例提供了一种鲁棒的个性化联邦学习方法、装置及系统,方法包括:服务器接收来自多个客户端的模型更新数据,模型更新数据为在客户端上训练的本地模型的参数在训练前后的参数差值;服务器根据模型更新数据,得到各模型更新数据之间的基于α的层位置正则化相似度;服务器针对每一个客户端,根据基于α的层位置正则化相似度,得到模型更新数据的权重;服务器根据模型更新数据的权重和模型更新数据,分别得到各客户端对应的聚合模型更新数据;服务器发送聚合模型更新数据到各客户端。本申请提供的技术方案用以解决在联邦学习中系统中存在恶意攻击者时,通过本地协作训练算法同时训练本地模型和聚合模型来抵御恶意客户端的投毒攻击问题。
-
公开(公告)号:CN116702191A
公开(公告)日:2023-09-05
申请号:CN202310615878.5
申请日:2023-05-29
Applicant: 北京交通大学 , 中国铁道科学研究院集团有限公司电子计算技术研究所
Abstract: 本发明提供了一种联邦学习本地模型参数聚合方法。该方法包括:对可信机构进行初始化处理,获得系统公共参数和主私钥;客户端和中心服务器向可信机构请求注册,可信机构组建所有客户端的通信群;客户端使用本地数据对中心服务器下发的全局模型进行训练,获得本地模型参数;客户端使用签名密钥和中心服务器的公钥签名并加密本地模型参数,将本地模型参数的密文和签名以匿名方式上传给中心服务器;中心服务器解密各客户端上传的本地模型参数,验证本地模型参数的签名;聚合经过验证的本地模型参数,根据聚合结果更新全局模型,向通信群中的所有客户端广播更新后的全局模型。本发明方法强化了联邦学习的隐私保护能力,维护联邦学习系统的鲁棒性。
-
公开(公告)号:CN116527393A
公开(公告)日:2023-08-01
申请号:CN202310662319.X
申请日:2023-06-06
Applicant: 北京交通大学
IPC: H04L9/40 , G06N20/00 , G06F18/214
Abstract: 本发明提供了一种面向联邦学习投毒攻击的防御方法、装置、设备及介质,包括:从多个客户端中获取本地数据对应的第一特征嵌入信息,本地数据预存在客户端中,各个客户端中的本地数据为总训练样本的不相交的样本子集;对第一特征嵌入信息与预存的本地数据对应的数据标签进行互信息计算;根据计算得到的互信息对第一特征嵌入信息进行异常特征嵌入剔除,并将剔除后的第一特征嵌入信息作为正常特征嵌入信息;基于正常特征嵌入信息对预存的顶部模型进行训练,以优化顶部模型参数。本发明能够在不借助辅助数据以及不接触客户端底部模型的条件下实现对恶意样本的规避且不影响模型的可用性,适用于纵向联邦学习场景中。
-
公开(公告)号:CN118966380A
公开(公告)日:2024-11-15
申请号:CN202411023007.5
申请日:2024-07-29
Applicant: 北京交通大学
Abstract: 本发明提供一种实现数据遗忘的模型更新方法、数据隐私保护方法及系统,属于数据隐私保护技术领域,中央服务器初始化全局遗忘模型;除目标客户端以外的剩余客户端获取初始化后的全局遗忘模型以进行本地训练;剩余客户端进行本地训练,将训练好的分类器传输给中央服务器;中央服务器通过余弦相似性对新的分类器参数进行判断;中央服务器通过新的分类器参数对历史分类器参数进行校准;中央服务器使用分类器参数更新全局遗忘模型。本发明减少了通讯开销;提高了遗忘操作的效率;提升了机器遗忘过程的鲁棒性,保障全局模型的可靠性。
-
公开(公告)号:CN117272370A
公开(公告)日:2023-12-22
申请号:CN202311189893.4
申请日:2023-09-14
Applicant: 北京交通大学
IPC: G06F21/62 , G06F16/9536 , G06N3/0442 , G06N3/08
Abstract: 本说明书实施例提供了一种基于用户轨迹序列的下一个兴趣点隐私保护推荐方法及系统,其中,方法包括:捕捉用户签到行为中复杂的序列转移模式和动态偏好,根据所述序列转移模式和动态偏好,基于序列模型建立融合用户长短期偏好特征的轨迹预测模型;将所述轨迹预测模型设置为联邦推荐训练形式,在轨迹数据不出当前地区范围的前提下,通过协调多个用户设备共同优化所述轨迹预测模型,并在优化过程中通过差分隐私机制对模型参数进行加噪保护。
-
公开(公告)号:CN116527393B
公开(公告)日:2024-01-16
申请号:CN202310662319.X
申请日:2023-06-06
Applicant: 北京交通大学
IPC: H04L9/40 , G06N20/00 , G06F18/214
Abstract: 本发明提供了一种面向联邦学习投毒攻击的防御方法、装置、设备及介质,包括:从多个客户端中获取本地数据对应的第一特征嵌入信息,本地数据预存在客户端中,各个客户端中的本地数据为总训练样本的不相交的样本子集;对第一特征嵌入信息与预存的本地数据对应的数据标签进行互信息计算;根据计算得到的互信息对第一特征嵌入信息进行异常特征嵌入剔除,并将剔除后的第一特征嵌入信息作为正常特征嵌入信息;基于正常特征嵌入信息对预存的顶部模型进行训练,以优化顶部模型参数。本发明能够在不借助辅助数据以及不接触客户端底部模型的条件下实现对恶意样本的规避且不影响模型的可用性,适用于纵向联邦学习场景中。
-
-
-
-
-
-
-
-
-