基于图卷积神经网络的车辆重识别方法

    公开(公告)号:CN112396027B

    公开(公告)日:2023-09-19

    申请号:CN202011384258.8

    申请日:2020-12-01

    Abstract: 本发明提供了一种基于图卷积神经网络的车辆重识别方法。包括:构建用于车辆重识别的网络模型,使用卷积神经网络提取待重识别的车辆图像的全局和局部特征,利用图卷积神经网络得到结构化特征,利用结构化特征计算网络模型的损失函数;根据损失函数训练网络模型,将待重识别的车辆图像和测试集的所有图像输入到训练好的网络模型中,分别得到待测图片和测试集的所有图像的图片特征,根据图片特征计算出待测图片和测试集的各个图像之间的相似性,根据相似性得到待重识别的车辆图像的重识别结果。本发明通过使用图卷积神经网络挖掘局部特征与局部特征、局部特征与全局特征之间的结构化信息,从而获得更优更全面的特征表达,提高了车辆重识别的精度。

    基于图卷积神经网络的车辆重识别方法

    公开(公告)号:CN112396027A

    公开(公告)日:2021-02-23

    申请号:CN202011384258.8

    申请日:2020-12-01

    Abstract: 本发明提供了一种基于图卷积神经网络的车辆重识别方法。包括:构建用于车辆重识别的网络模型,使用卷积神经网络提取待重识别的车辆图像的全局和局部特征,利用图卷积神经网络得到结构化特征,利用结构化特征计算网络模型的损失函数;根据损失函数训练网络模型,将待重识别的车辆图像和测试集的所有图像输入到训练好的网络模型中,分别得到待测图片和测试集的所有图像的图片特征,根据图片特征计算出待测图片和测试集的各个图像之间的相似性,根据相似性得到待重识别的车辆图像的重识别结果。本发明通过使用图卷积神经网络挖掘局部特征与局部特征、局部特征与全局特征之间的结构化信息,从而获得更优更全面的特征表达,提高了车辆重识别的精度。

Patent Agency Ranking