-
公开(公告)号:CN106897662A
公开(公告)日:2017-06-27
申请号:CN201710010146.8
申请日:2017-01-06
Applicant: 北京交通大学
Abstract: 本发明提供了一种基于多任务学习的人脸关键特征点的定位方法。该方法包括根据级联分类器对目标图像进行人脸区域检测,利用人眼检测器定位识别出的人脸区域中的人眼的位置,计算出人脸区域中的两眼间的距离;将人脸区域中的两眼间的距离与人脸平均模型中的两眼间的距离进行对比,根据比较结果确定人脸平均模型的缩放比例,利用缩放比例对人脸平均模型中的人脸区域进行位置调整,通过多任务学习方法定位目标图像对应的人脸区域中的人脸特征点。本发明通过利用不同特征的表征优势,结合多任务学习的框架,解决了监督梯度下降法中的特征点定位中的学习不足的问题,提升了人脸特征点定位的初始化模型的检测性能,提高了人脸关键特征点定位的准确性。
-
公开(公告)号:CN106897662B
公开(公告)日:2020-03-10
申请号:CN201710010146.8
申请日:2017-01-06
Applicant: 北京交通大学
Abstract: 本发明提供了一种基于多任务学习的人脸关键特征点的定位方法。该方法包括根据级联分类器对目标图像进行人脸区域检测,利用人眼检测器定位识别出的人脸区域中的人眼的位置,计算出人脸区域中的两眼间的距离;将人脸区域中的两眼间的距离与人脸平均模型中的两眼间的距离进行对比,根据比较结果确定人脸平均模型的缩放比例,利用缩放比例对人脸平均模型中的人脸区域进行位置调整,通过多任务学习方法定位目标图像对应的人脸区域中的人脸特征点。本发明通过利用不同特征的表征优势,结合多任务学习的框架,解决了监督梯度下降法中的特征点定位中的学习不足的问题,提升了人脸特征点定位的初始化模型的检测性能,提高了人脸关键特征点定位的准确性。
-