基于GCN-Transformer的城市轨道交通节假日短时客流预测方法

    公开(公告)号:CN115034496A

    公开(公告)日:2022-09-09

    申请号:CN202210733762.7

    申请日:2022-06-27

    Abstract: 本发明公开了一种基于GCN‑Transformer的城市轨道交通节假日短时客流预测方法。该方法包括:将交通网络视为图结构,构建用于表征各站点之间拓扑关系的线网图;获取历史客流矩阵和社交媒体数据矩阵,其中所述历史客流数据矩阵利用自动售检票系统获得,所述社交媒体数据矩阵利用互联网社交媒体获得;将所述线网图、所述历史客流矩阵和所述社交媒体数据矩阵输入到经训练的深度学习模型,预测出后续时刻的客流数据。本发明将假期客流数据、假期相关社交媒体数据量以及交通线网拓扑结构有机地整合至一起,能够充分捕捉客流的时空特征和假期特性,在满足短时客流预测“实时性”要求的同时,提高了假期客流的预测精度。

Patent Agency Ranking