-
公开(公告)号:CN113127537B
公开(公告)日:2023-11-24
申请号:CN202110411099.4
申请日:2021-04-16
Applicant: 北京交通大学
IPC: G06Q10/04 , G06Q10/0875 , G06F16/2458 , G06F16/25 , G06N3/045 , G06N3/0442 , G06N3/048 , G06F18/243 , G06F18/214 , G06N5/01 , G06N20/20 , G06F123/02
Abstract: 本发明提供了一种融合时序预测模型和机器学习模型的备件需求预测方法。该方法包括:采集备件需求预测相关的元数据,将ETL处理后的元数据存入数据库中;对数据库中存储的元数据进行预处理,对预处理后的元数据进行数据特征挖掘,确定影响备件需求的各个因素,分析出各个因素对备件需求的影响程度,在备件需求预测阶段,以经过影响程度分析处理后的元数据、各个有用的影响因素以及排序后的各个影响因素对备件需求的影响程度作为源数据,将源数据输入到基于LSTM、GRU时序预测和XGBoost、Randomforest机器学习融合模型预测方法中,对未来某个月份的备件需求量进行预测分析,并输出预测结果。本发明方法能够通过供应链经济原
-
公开(公告)号:CN110503354A
公开(公告)日:2019-11-26
申请号:CN201910591425.7
申请日:2019-07-02
Applicant: 北京交通大学
Abstract: 本发明涉及一种基于深度学习的RFID标签位置估计方法,包括CNN网络模型训练方法以及基于深度学习的RFID标签位置估计算法使用方法:CNN网络模型训练方法包括:S11,输入训练数据集;S12,进行数据预处理操作;S13,构建并训练CNN网络模型;S14,输出CNN网络模型的参数;基于深度学习的RFID标签位置估计算法使用方法包括:S21,输入实际采样数据;S22,对输入的实际采样数据进行预处理操作;S23,利用网络模型进行位置估计;S24,利用CNN网络模型对RFID标签位置估计结果。本发明能识别出RFID标签在传送带上的相对位置,实现对多个标签先后次序的准确估计,为自动分拣提供可靠的信息。
-
公开(公告)号:CN110503354B
公开(公告)日:2021-11-23
申请号:CN201910591425.7
申请日:2019-07-02
Applicant: 北京交通大学
Abstract: 本发明涉及一种基于深度学习的RFID标签位置估计方法,包括CNN网络模型训练方法以及基于深度学习的RFID标签位置估计算法使用方法:CNN网络模型训练方法包括:S11,输入训练数据集;S12,进行数据预处理操作;S13,构建并训练CNN网络模型;S14,输出CNN网络模型的参数;基于深度学习的RFID标签位置估计算法使用方法包括:S21,输入实际采样数据;S22,对输入的实际采样数据进行预处理操作;S23,利用网络模型进行位置估计;S24,利用CNN网络模型对RFID标签位置估计结果。本发明能识别出RFID标签在传送带上的相对位置,实现对多个标签先后次序的准确估计,为自动分拣提供可靠的信息。
-
公开(公告)号:CN113127538A
公开(公告)日:2021-07-16
申请号:CN202110411100.3
申请日:2021-04-16
Applicant: 北京交通大学
Abstract: 本发明提供了一种高精度的备件需求预测方法。该方法包括:采集备件需求预测相关的元数据,将ETL处理后的元数据存入数据库中;对数据库中存储的元数据进行预处理,对预处理后的元数据进行数据特征挖掘,确定影响备件需求的各个因素,分析出各个因素对备件需求的影响程度,在备件需求预测阶段,以经过影响程度分析处理后的元数据、各个有用的影响因素以及排序后的各个影响因素对备件需求的影响程度作为源数据,将源数据输入到基于LinearRegression、AdaBoost、GBDT的机器学习融合建模预测方法中,对未来某个月份的备件需求量进行预测分析,并输出预测结果。本发明方法能够通过供应链经济原理,做出合理的购买计划,有利于部门充分利用资源,合理地分配购买各备件数量,减少不必要的财产成本和其他运营成本。
-
公开(公告)号:CN113127538B
公开(公告)日:2024-02-09
申请号:CN202110411100.3
申请日:2021-04-16
Applicant: 北京交通大学
IPC: G06F16/2458 , G06F16/25 , G06N20/20 , G06N5/01 , G06Q10/04 , G06Q10/0875
Abstract: 本发明提供了一种高精度的备件需求预测方法。该方法包括:采集备件需求预测相关的元数据,将ETL处理后的元数据存入数据库中;对数据库中存储的元数据进行预处理,对预处理后的元数据进行数据特征挖掘,确定影响备件需求的各个因素,分析出各个因素对备件需求的影响程度,在备件需求预测阶段,以经过影响程度分析处理后的元数据、各个有用的影响因素以及排序后的各个影响因素对备件需求的影响程度作为源 数 据 ,将 源 数 据 输 入 到 基 于LinearRegression、AdaBoost、GBDT的机器学习融合建模预测方法中,对未来某个月份的备件需求量进行预测分析,并输出预测结果。本发明方法能够通过供应链经济原理,做出合理的购买计划,有利于部门充分利用资源,合理地分配购买各备件数量,减少不必要的财产成本和其他运营成本。
-
公开(公告)号:CN113127537A
公开(公告)日:2021-07-16
申请号:CN202110411099.4
申请日:2021-04-16
Applicant: 北京交通大学
Abstract: 本发明提供了一种融合时序预测模型和机器学习模型的备件需求预测方法。该方法包括:采集备件需求预测相关的元数据,将ETL处理后的元数据存入数据库中;对数据库中存储的元数据进行预处理,对预处理后的元数据进行数据特征挖掘,确定影响备件需求的各个因素,分析出各个因素对备件需求的影响程度,在备件需求预测阶段,以经过影响程度分析处理后的元数据、各个有用的影响因素以及排序后的各个影响因素对备件需求的影响程度作为源数据,将源数据输入到基于LSTM、GRU时序预测和XGBoost、Randomforest机器学习融合模型预测方法中,对未来某个月份的备件需求量进行预测分析,并输出预测结果。本发明方法能够通过供应链经济原理,做出合理的购买计划,有利于部门充分利用资源,合理地分配购买各备件数量,减少不必要的财产成本和其他运营成本。
-
-
-
-
-