基于跨类别矩阵满秩约束的行人搜索方法及系统

    公开(公告)号:CN115019347B

    公开(公告)日:2024-12-13

    申请号:CN202210725215.4

    申请日:2022-06-24

    Abstract: 本发明提供一种基于跨类别矩阵满秩约束的行人搜索方法及系统,属于计算机视觉技术领域,利用预先训练好的行人搜索模型对获取的待处理的图像数据进行处理,识别图像中的行人;其中,预先训练好的行人搜索模型的训练使用ResNet50网络为基础网络,根据子任务对ResNet50网络进行拆分,构造了一个分离‑基准网络模型,引入可变形卷积来定位整个行人区域,结合秩感知优化损失,对跨类别概率矩阵进行满秩约束,增强类间特征的判别性和多样性。本发明考虑联合多任务协同训练的特征共享网络权重的问题,提出一个基于跨类别概率矩阵秩约束的特征多样性行人搜索框架,然后引入可变形卷积来定位整个行人区域,最后提出了秩感知优化损失,增强类间特征的判别性和多样性。

    基于跨类别矩阵满秩约束的行人搜索方法及系统

    公开(公告)号:CN115019347A

    公开(公告)日:2022-09-06

    申请号:CN202210725215.4

    申请日:2022-06-24

    Abstract: 本发明提供一种基于跨类别矩阵满秩约束的行人搜索方法及系统,属于计算机视觉技术领域,利用预先训练好的行人搜索模型对获取的待处理的图像数据进行处理,识别图像中的行人;其中,预先训练好的行人搜索模型的训练使用ResNet50网络为基础网络,根据子任务对ResNet50网络进行拆分,构造了一个分离‑基准网络模型,引入可变形卷积来定位整个行人区域,结合秩感知优化损失,对跨类别概率矩阵进行满秩约束,增强类间特征的判别性和多样性。本发明考虑联合多任务协同训练的特征共享网络权重的问题,提出一个基于跨类别概率矩阵秩约束的特征多样性行人搜索框架,然后引入可变形卷积来定位整个行人区域,最后提出了秩感知优化损失,增强类间特征的判别性和多样性。

Patent Agency Ranking