基于动态时空注意力机制的大气环境污染物预测模型

    公开(公告)号:CN113326981A

    公开(公告)日:2021-08-31

    申请号:CN202110578556.9

    申请日:2021-05-26

    Abstract: 本发明涉及环境监测技术领域,提出了基于动态时空注意力机制的大气环境污染物预测模型,包括获得S个监测站点污染物的浓度数据、温度数据和湿度数据,构建输入矩阵;对输入矩阵进行一维卷积操作,得到原始序列;构建时空编码器,将原始序列输入时空编码器;添加卷积门控单元控制时空编码器的输出;构建静态注意力机制和动态注意力机制,与时空编码器的输出信息进行融合,得到目标站点的编码信息;构建解码器,解码目标站点的编码信息,输出预测结果。通过上述技术方案,解决了现有技术中空气污染物预测模型预测准确度差的问题。

    基于动态时空注意力机制的大气环境污染物预测模型

    公开(公告)号:CN113326981B

    公开(公告)日:2024-05-31

    申请号:CN202110578556.9

    申请日:2021-05-26

    Abstract: 本发明涉及环境监测技术领域,提出了基于动态时空注意力机制的大气环境污染物预测模型,包括获得S个监测站点污染物的浓度数据、温度数据和湿度数据,构建输入矩阵;对输入矩阵进行一维卷积操作,得到原始序列;构建时空编码器,将原始序列输入时空编码器;添加卷积门控单元控制时空编码器的输出;构建静态注意力机制和动态注意力机制,与时空编码器的输出信息进行融合,得到目标站点的编码信息;构建解码器,解码目标站点的编码信息,输出预测结果。通过上述技术方案,解决了现有技术中空气污染物预测模型预测准确度差的问题。

Patent Agency Ranking