一种用于复杂场景的层次式人群仿真方法及系统

    公开(公告)号:CN104732014A

    公开(公告)日:2015-06-24

    申请号:CN201510088609.3

    申请日:2015-02-26

    Abstract: 本发明公开一种用于复杂场景的层次式人群仿真方法及系统,该方法包括步骤:对复杂场景进行区域划分,得到复杂场景的拓扑结构图;对复杂场景进行全局路径规划,计算包含复杂场景中场景入口、场景出口和特定感兴趣区域的全局路径;确定人群分组信息和人群中个体在复杂场景中的位置信息,在复杂场景中建立个体的势场,并根据个体的势场计算个体在复杂场景中受到的作用力;计算在人群仿真过程中个体的实时速度,利用交通流模型对在人群仿真过程中个体的实时速度进行实时修正,实现人群仿真。本发明所述技术方案改善了势场法人群仿真中的速度控制机制,解决速度变化不自然的问题,使速度的变化更加符合人群运动规律,满足了人群仿真的实际需求。

    基于优化方差下降的计算机视觉单目标跟踪方法

    公开(公告)号:CN111539989B

    公开(公告)日:2023-09-22

    申请号:CN202010312961.1

    申请日:2020-04-20

    Abstract: 本发明提供了一种基于优化方差下降的计算机视觉单目标跟踪方法。该方法包括:根据单目标跟踪问题设计基于非凸优化的随机方差下降梯度的深度神经网络模型,对深度神经网络模型进行监督训练,根据训练好的深度神经网络模型使用基于回归动作奖励函数的强化学习方法训练表观模型与运动模型;利用训练好的表观模型、运动模型和深度神经网络模型对当前环境下的单目标进行跟踪,得到跟踪目标的预测位置和尺度;根据当前跟踪目标的位置和目标特征进行表观模型以及运动模型更新,进行下一帧的目标跟踪,直至跟踪结束。本发明的方法不仅运算速度更快,而且具有更稳定的模型探索能力,在绝大多数复杂场景下都能够达到更鲁棒的、高质量的目标跟踪效果。

    基于优化方差下降的计算机视觉单目标跟踪方法

    公开(公告)号:CN111539989A

    公开(公告)日:2020-08-14

    申请号:CN202010312961.1

    申请日:2020-04-20

    Abstract: 本发明提供了一种基于优化方差下降的计算机视觉单目标跟踪方法。该方法包括:根据单目标跟踪问题设计基于非凸优化的随机方差下降梯度的深度神经网络模型,对深度神经网络模型进行监督训练,根据训练好的深度神经网络模型使用基于回归动作奖励函数的强化学习方法训练表观模型与运动模型;利用训练好的表观模型、运动模型和深度神经网络模型对当前环境下的单目标进行跟踪,得到跟踪目标的预测位置和尺度;根据当前跟踪目标的位置和目标特征进行表观模型以及运动模型更新,进行下一帧的目标跟踪,直至跟踪结束。本发明的方法不仅运算速度更快,而且具有更稳定的模型探索能力,在绝大多数复杂场景下都能够达到更鲁棒的、高质量的目标跟踪效果。

    一种基于自适应广义PageRank图神经网络的交通流预测方法

    公开(公告)号:CN115620514B

    公开(公告)日:2024-08-02

    申请号:CN202211156320.7

    申请日:2022-09-22

    Abstract: 本发明提供了一种基于自适应广义PageRank图神经网络的交通流预测方法。该方法包括:获取公共交通流量数据中的信息点POI信息,构建距离编码;将时间信息构建为时间编码,拼接距离编码和时间编码为时空编码DTE;构建基于广义PageRank的时空图神经网络模型,将历史时间序列特征H和DTE作为基于广义PageRank的时空图神经网络模型的输入数据,对基于广义PageRank的时空图神经网络模型的进行训练,将历史交通流量序列输入到训练好的基于广义PageRank的时空图神经网络模型,基于广义PageRank的时空图神经网络模型输出未来交通流量序列。本发明设计了RPTA来自适应地建模不同时间步长之间的非线性相关性,设计了距离和时间编码来合并道路网络的地理信息和时间信息,可以有效地预测道路的交通流。

    一种基于自适应广义PageRank图神经网络的交通流预测方法

    公开(公告)号:CN115620514A

    公开(公告)日:2023-01-17

    申请号:CN202211156320.7

    申请日:2022-09-22

    Abstract: 本发明提供了一种基于自适应广义PageRank图神经网络的交通流预测方法。该方法包括:获取公共交通流量数据中的信息点POI信息,构建距离编码;将时间信息构建为时间编码,拼接距离编码和时间编码为时空编码DTE;构建基于广义PageRank的时空图神经网络模型,将历史时间序列特征H和DTE作为基于广义PageRank的时空图神经网络模型的输入数据,对基于广义PageRank的时空图神经网络模型的进行训练,将历史交通流量序列输入到训练好的基于广义PageRank的时空图神经网络模型,基于广义PageRank的时空图神经网络模型输出未来交通流量序列。本发明设计了RPTA来自适应地建模不同时间步长之间的非线性相关性,设计了距离和时间编码来合并道路网络的地理信息和时间信息,可以有效地预测道路的交通流。

    一种用于复杂场景的层次式人群仿真方法及系统

    公开(公告)号:CN104732014B

    公开(公告)日:2017-08-25

    申请号:CN201510088609.3

    申请日:2015-02-26

    Abstract: 本发明公开一种用于复杂场景的层次式人群仿真方法及系统,该方法包括步骤:对复杂场景进行区域划分,得到复杂场景的拓扑结构图;对复杂场景进行全局路径规划,计算包含复杂场景中场景入口、场景出口和特定感兴趣区域的全局路径;确定人群分组信息和人群中个体在复杂场景中的位置信息,在复杂场景中建立个体的势场,并根据个体的势场计算个体在复杂场景中受到的作用力;计算在人群仿真过程中个体的实时速度,利用交通流模型对在人群仿真过程中个体的实时速度进行实时修正,实现人群仿真。本发明所述技术方案改善了势场法人群仿真中的速度控制机制,解决速度变化不自然的问题,使速度的变化更加符合人群运动规律,满足了人群仿真的实际需求。

Patent Agency Ranking