-
公开(公告)号:CN113870160B
公开(公告)日:2024-02-27
申请号:CN202111060998.0
申请日:2021-09-10
Applicant: 北京交通大学
IPC: G06T5/50 , G06T5/60 , G06T17/00 , G06N3/0464 , G06N3/084
Abstract: 本发明提供了一种基于变换器神经网络的点云数据处理方法。该方法包括:构建三维物体对称检测模型,通过检测物体对称面/轴获取输入的点云数据的对称点,将点云数据的投影平面转换为对称结构的旋转平移操作,得到多组数据据增强后的点云图数据;通过变换器网络模型提取多组数据据增强后的点云图数据的全局特征信息和局部特征信息,得到下采样后的点云数据;结合不同的目标任务需求,构建任务驱动的任务网络模型,将下采样后的点云数据输入到任务网络模型,得到目标任务结果。本发明有效结合三维物体对称检测模型与变换器网络模型,能够在提高下采样模型鲁棒性的同时,进而具有最小化目标任务精度损失的能力,提升下采样规模
-
公开(公告)号:CN113870160A
公开(公告)日:2021-12-31
申请号:CN202111060998.0
申请日:2021-09-10
Applicant: 北京交通大学
Abstract: 本发明提供了一种基于变换器神经网络的点云数据处理方法。该方法包括:构建三维物体对称检测模型,通过检测物体对称面/轴获取输入的点云数据的对称点,将点云数据的投影平面转换为对称结构的旋转平移操作,得到多组数据据增强后的点云图数据;通过变换器网络模型提取多组数据据增强后的点云图数据的全局特征信息和局部特征信息,得到下采样后的点云数据;结合不同的目标任务需求,构建任务驱动的任务网络模型,将下采样后的点云数据输入到任务网络模型,得到目标任务结果。本发明有效结合三维物体对称检测模型与变换器网络模型,能够在提高下采样模型鲁棒性的同时,进而具有最小化目标任务精度损失的能力,提升下采样规模和目标任务的精确度。
-