一种基于多智能体强化学习的铁路BIM数据边缘缓存方法

    公开(公告)号:CN117473616A

    公开(公告)日:2024-01-30

    申请号:CN202311463023.1

    申请日:2023-11-06

    Abstract: 本发明提供了一种基于多智能体强化学习的铁路BIM数据边缘缓存方法。该方法包括:构建BIMDipFM模型,利用BS下用户与BIM数据的历史交互信息对留存率进行预测,获取BIM数据的内容重要性程度,采用马尔可夫博弈模型建立多节点协同缓存模型,得到每个缓存节点的BIM数据缓存状态和需求状态,生成系统中智能体的当前时刻环境状态,构建动作掩码模块,过滤无效动作,输出动作空间,基于actor网络通过Gumble Softmax算法输出确定动作,Agent在环境中执行确定动作,输出奖励,获取新环境状态,将环境状态、确定动作、奖励和新环境状态储存经验回放池中,经验回放池储存满后进行经验回放,更新目标网络,以提高BIM数据的缓存效率,减轻云侧和核心网络的流量负载,提升用户访问速度。

    面向海量数据实时处理的云边协同自适应深度推理方法

    公开(公告)号:CN115392467B

    公开(公告)日:2024-02-09

    申请号:CN202211040427.5

    申请日:2022-08-29

    Abstract: 本发明提供了一种面向海量数据实时处理的云边协同自适应深度推理方法。该方法包括:将DNN模型进行模型量化,根据得到的量化模型对DNN模型进行DAG构建;对DAG网络进行可行分割点的搜索,得到优化后的潜在分割点集;基于优化后的潜在分割点集对DNN模型各层在终端设备上运行的累积推理延迟、数据传输延迟和累积量化损失进行数据拟合,利用以带宽为变量的权重函数对DNN模型各层的累积推理延迟、数据传输延迟和累积量化损失的目标函数进行加权优化,得到最优的分割点;根据所述最优分割点将DNN模型进行分割。本发明考虑到模型量化带来的精度损失,将精度损失和时延根据网络质量的变化进行加权优化,以满足用户在不同的网络质量下对服务质量的不同需求。

    一种基于多智能体强化学习的铁路BIM数据边缘缓存方法

    公开(公告)号:CN117473616B

    公开(公告)日:2025-03-25

    申请号:CN202311463023.1

    申请日:2023-11-06

    Abstract: 本发明提供了一种基于多智能体强化学习的铁路BIM数据边缘缓存方法。该方法包括:构建BIMDipFM模型,利用BS下用户与BIM数据的历史交互信息对留存率进行预测,获取BIM数据的内容重要性程度,采用马尔可夫博弈模型建立多节点协同缓存模型,得到每个缓存节点的BIM数据缓存状态和需求状态,生成系统中智能体的当前时刻环境状态,构建动作掩码模块,过滤无效动作,输出动作空间,基于actor网络通过Gumble Softmax算法输出确定动作,Agent在环境中执行确定动作,输出奖励,获取新环境状态,将环境状态、确定动作、奖励和新环境状态储存经验回放池中,经验回放池储存满后进行经验回放,更新目标网络,以提高BIM数据的缓存效率,减轻云侧和核心网络的流量负载,提升用户访问速度。

    面向海量数据实时处理的云边协同自适应深度推理方法

    公开(公告)号:CN115392467A

    公开(公告)日:2022-11-25

    申请号:CN202211040427.5

    申请日:2022-08-29

    Abstract: 本发明提供了一种面向海量数据实时处理的云边协同自适应深度推理方法。该方法包括:将DNN模型进行模型量化,根据得到的量化模型对DNN模型进行DAG构建;对DAG网络进行可行分割点的搜索,得到优化后的潜在分割点集;基于优化后的潜在分割点集对DNN模型各层在终端设备上运行的累积推理延迟、数据传输延迟和累积量化损失进行数据拟合,利用以带宽为变量的权重函数对DNN模型各层的累积推理延迟、数据传输延迟和累积量化损失的目标函数进行加权优化,得到最优的分割点;根据所述最优分割点将DNN模型进行分割。本发明考虑到模型量化带来的精度损失,将精度损失和时延根据网络质量的变化进行加权优化,以满足用户在不同的网络质量下对服务质量的不同需求。

Patent Agency Ranking