一种基于多层级特征融合的行为识别方法及装置

    公开(公告)号:CN119625818A

    公开(公告)日:2025-03-14

    申请号:CN202411417104.2

    申请日:2024-10-11

    Abstract: 本发明公开了一种基于多层级特征融合的行为识别方法及装置,包括步骤:步骤S1:多层级特征的收集;步骤S2:时序特征显著性表达;步骤S3:多层次特征融合方法;步骤S4;输出目标任务结果。本发明首次同时考虑了三维卷积神经网络中的时序感受野首先问题和不同运动速率分辨能力弱的问题,使三维卷积神经网络在维持计算开销变化不大的情况下有效提升行为识别的准确率。本发明设计了时序特征显著性表达机制,通过对特征进行显著性表达处理,获取全局时空信息,增强模型的长时序建模能力。设计多层级特征融合模块,利用不同层级特征对运动速率的感知能力,增强模型的分辨力,实现单输入源下不同动作速率的行为识别能力。

    基于多级跨模态联合对齐的行人重识别方法及系统

    公开(公告)号:CN118366186A

    公开(公告)日:2024-07-19

    申请号:CN202410475803.6

    申请日:2024-04-19

    Abstract: 本发明提供一种基于多级跨模态联合对齐的行人重识别方法及系统,属于机器视觉图像处理技术领域,获取待识别的图像数据;利用预先训练好的行人重识别模型对获取的待识别的图像进行处理,得到图像中行人重识别结果。本发明提出可见红外模态协调器并以加权灰度、跨通道剪切混合和频谱抖动协调器三种不同的方式,减轻了可见光和红外图像之间的差异,弥合了图像级别的模态差距;引入具有可训练参数的模态分布适配器,捕获特征图的空间统计特征并自适应地对齐不同模态的特征分布,减少特征级别的模态差距;引入跨模态检索损失,减少VI‑ReID目标层面的差距;引入多光谱增强排序策略,增强了模型的鲁棒性和跨模态检索能力。

Patent Agency Ranking