-
公开(公告)号:CN119357469A
公开(公告)日:2025-01-24
申请号:CN202411434652.6
申请日:2024-10-15
Applicant: 北京中科闻歌科技股份有限公司 , 新华融合媒体科技发展(北京)有限公司
IPC: G06F16/9535 , G06F40/284 , G06F40/216 , G06F18/22
Abstract: 本发明涉及自然语言处理领域,提供一种新闻推荐方法、电子设备和存储介质,包括:获取新闻数据库对应的初始新闻特征;获取新闻数据库对应的用户,并基于用户对应的感兴趣新闻的初始新闻特征获取对应的初始用户特征;基于用户间相似度、用户新闻相似度、新闻间相似度、共现实体词频和用户感兴趣领域,从所述新闻数据库中获取用户潜在感兴趣的候选新闻集;对初始新闻特征进行更新,得到更新新闻特征,以及对初始用户特征进行更新,得到更新用户特征;基于更新用户特征和对应的候选新闻的更新新闻特征获取候选新闻对应的推荐值;将候选新闻集中推荐值大于预设推荐值的候选新闻作为推荐新闻并推荐给对应的用户。本发明能够为用户提供更准确的新闻。
-
公开(公告)号:CN118940826B
公开(公告)日:2024-12-20
申请号:CN202411434591.3
申请日:2024-10-15
Applicant: 北京中科闻歌科技股份有限公司 , 新华融合媒体科技发展(北京)有限公司
IPC: G06N5/02
Abstract: 本发明涉及自然语言处理领域,提供一种事件知识图谱构建方法、装置和电子设备,包括:基于源文本数据集构建事件图谱;基于所述事件图谱和开源知识图谱之间的共同实体,对所述事件图谱和所述开源知识图谱进行融合,得到融合了事件图谱和开源知识图谱的事件知识图谱;获取所述事件知识图谱中的节点和有向边的特征向量,得到进行了知识表示的事件知识图谱,作为目标事件知识图谱。本发明通过将事件图谱与知识图谱深度融合得到具有丰富知识表示的事件知识图谱。
-
公开(公告)号:CN119783663A
公开(公告)日:2025-04-08
申请号:CN202411861891.X
申请日:2024-12-17
Applicant: 北京中科闻歌科技股份有限公司 , 新华融合媒体科技发展(北京)有限公司
IPC: G06F40/258 , G06N3/0455 , G06N3/08
Abstract: 本发明提供了一种基于大语言模型的事件名生成方法、设备及介质,涉及事件名生成技术领域,所述方法包括:获取目标文章集合A;将A中的每一篇目标文章输入至预设的预训练语言模型,以得到标题摘要组列表B;获取B中每一标题摘要组对应的token长度,以得到B对应的token长度列表NB;确定B对应的分批处理的初始批次数量NUM;若NUM>1,则将B划分为若干批次,以得到B对应的批次列表C;根据C和预设的大语言模型,得到目标事件对应的事件名称;本发明中的方法,在生成事件的名称的过程中,结合目标事件的多篇目标文章,所参考的信息较多,从而使得生成的目标事件的名称更加准确。
-
公开(公告)号:CN118940826A
公开(公告)日:2024-11-12
申请号:CN202411434591.3
申请日:2024-10-15
Applicant: 北京中科闻歌科技股份有限公司 , 新华融合媒体科技发展(北京)有限公司
IPC: G06N5/02
Abstract: 本发明涉及自然语言处理领域,提供一种事件知识图谱构建方法、装置和电子设备,包括:基于源文本数据集构建事件图谱;基于所述事件图谱和开源知识图谱之间的共同实体,对所述事件图谱和所述开源知识图谱进行融合,得到融合了事件图谱和开源知识图谱的事件知识图谱;获取所述事件知识图谱中的节点和有向边的特征向量,得到进行了知识表示的事件知识图谱,作为目标事件知识图谱。本发明通过将事件图谱与知识图谱深度融合得到具有丰富知识表示的事件知识图谱。
-
公开(公告)号:CN116049414B
公开(公告)日:2023-06-06
申请号:CN202310346367.8
申请日:2023-04-03
Applicant: 北京中科闻歌科技股份有限公司 , 新华融合媒体科技发展(北京)有限公司
Abstract: 本发明提供了一种基于话题描述的文本聚类方法、电子设备和存储介质,方法包括:首先对待聚类的每个文本生成一个话题描述,然后将该话题描述输入话题描述特征生成模型,提取话题描述的特征,作为当前文本的话题描述特征,基于该特征,对文本进行聚类,相较于直接使用原始文本提取的特征进行聚类,使用生成的话题描述特征进行聚类,减少了文本内容形式多样导致的噪声干扰,提高了聚类准确性。聚类后,基于文本和话题的特征向量之间的相似度以及文本和话题的话题描述特征向量之间的相似度,对聚类结果进行清洗和合并,最后得到聚类结果和每个话题的话题描述,能够使得聚类结果更加准确。
-
公开(公告)号:CN116049414A
公开(公告)日:2023-05-02
申请号:CN202310346367.8
申请日:2023-04-03
Applicant: 北京中科闻歌科技股份有限公司 , 新华融合媒体科技发展(北京)有限公司
Abstract: 本发明提供了一种基于话题描述的文本聚类方法、电子设备和存储介质,方法包括:首先对待聚类的每个文本生成一个话题描述,然后将该话题描述输入话题描述特征生成模型,提取话题描述的特征,作为当前文本的话题描述特征,基于该特征,对文本进行聚类,相较于直接使用原始文本提取的特征进行聚类,使用生成的话题描述特征进行聚类,减少了文本内容形式多样导致的噪声干扰,提高了聚类准确性。聚类后,基于文本和话题的特征向量之间的相似度以及文本和话题的话题描述特征向量之间的相似度,对聚类结果进行清洗和合并,最后得到聚类结果和每个话题的话题描述,能够使得聚类结果更加准确。
-
公开(公告)号:CN112685204B
公开(公告)日:2024-03-05
申请号:CN202011593204.2
申请日:2020-12-29
Applicant: 北京中科闻歌科技股份有限公司 , 国科智安(北京)科技有限公司 , 深圳中科闻歌科技有限公司
Abstract: 本申请涉及一种基于异常检测的社交机器人检测方法及装置,其中方法包括:在目标数据源中,筛选得到满足预设数量要求,且对应于目标类别的待检测信息;通过确定发布各个所述待检测信息的账户,得到每个所述账户对应的待检测信息集;根据所述待检测信息集,确定所述账户对应的行为特征信息;采用预设异常检测算法对所述行为特征信息进行异常检测,确定所有行为特征信息中的异常行为特征信息;基于异常行为特征信息确定所有账户中的社交机器人账户。通过本实施例中的方法,只依赖于筛选得到的待检测信息即可快速确定社交机器人账户,相对于人工筛选,可以有效提高处理效率以及准确率。
-
公开(公告)号:CN113496780B
公开(公告)日:2023-11-03
申请号:CN202010197391.6
申请日:2020-03-19
Applicant: 北京中科闻歌科技股份有限公司
IPC: G16H50/80
Abstract: 本发明实施例提供了一种传染病确诊者数量预测方法、装置、服务器及存储介质,该方法包括:确定传染病预测天数、基本传染数、传染病潜伏周期,基于以下步骤进行迭代,直至传染病预测天数归零输出传染病第二累计确诊者数量:获取第一易感者数量、第一现存疑似者数量、第一累计确诊者数量、第一累计痊愈者数量;基于第一累计痊愈者数量、第一累计确诊者数量、基本传染数、传染病潜伏周期更新预设传染病预测模型中系数;基于第一易感者数量、第一现存疑似者数量、第一累计确诊者数量、第一累计痊愈者数量、经过更新的传染病预测模型,输出第二易感者数量、第二现存疑似者数量、第二累计确诊者数量、第二累计痊愈者数量;对传染病预测天数进行递减。
-
公开(公告)号:CN119862889A
公开(公告)日:2025-04-22
申请号:CN202411940326.2
申请日:2024-12-26
Applicant: 北京中科闻歌科技股份有限公司
IPC: G06F40/30
Abstract: 本公开涉及一种基于裁判模型的大语言模型评价方法、装置、设备及介质,该方法包括:将预先获取的测试问题分别输入待评价的多个大语言模型,并获取各个大语言模型的输出结果;将测试问题、各个大语言模型的输出结果以及预设的第一引导指令输入预先建立的裁判模型,得到裁判模型输出的模型评价结果,第一引导指令用于引导裁判模型采用准确性、相关性、创造性、逻辑连贯性和信息完整性等目标评价标准对多个大语言模型的模型性能进行评价,模型评价结果包括性能最优的目标大语言模型的信息的。本公开通过将多个大语言模型针对同一问题的输出结果输入裁判模型,引导裁判模型从多角度对各个大语言模型的输出结果进行评价,能够自动对大语言模型进行全面评价。
-
公开(公告)号:CN118485046B
公开(公告)日:2024-09-17
申请号:CN202410907835.9
申请日:2024-07-08
Applicant: 北京中科闻歌科技股份有限公司
IPC: G06F40/169 , G06F16/35 , G06F18/214 , G06F18/27 , G06F40/35 , G06F16/332
Abstract: 本公开提供了一种标注数据处理方法和装置,涉及人工智能技术领域,具体涉及自然语言处理、深度学习、大模型等技术领域。具体实现方案为:获取初始标注指令数据集,初始标注指令数据集包括标注回复文本数据;基于初始标注指令数据集中的标注回复文本数据,得到筛选标注指令数据集,筛选标注指令数据集中的标注回复文本数据不具有重复内容;基于筛选标注指令数据集,确定内容问题类型;基于内容问题类型以及多种不同类型的大模型,对筛选标注指令数据集进行处理,得到目标标注指令数据集。
-
-
-
-
-
-
-
-
-