一种用于单标签图像检索的标签表征构建方法

    公开(公告)号:CN115964527B

    公开(公告)日:2023-09-26

    申请号:CN202310011361.5

    申请日:2023-01-05

    Abstract: 本发明提供了一种用于单标签图像检索的标签表征构建方法,包括:基于全连接神经网络确定单标签图像的标签表征,并基于标签表征平衡损失以及量化损失反向优化全连接神经网络;基于卷积神经网络提取单标签图像的图像特征,并与对应的标签表征之间的中心相似性损失来优化卷积神经网络;基于卷积神经网络提取待检索单标签图像特征,并符号化为二进制码,并基于二进制码实现对单标签图像的检索。通过确定单标签图像的单标签信息,同时,通过全连接神经网络生成各个标签的表征向量,并鼓励标签表征相互之间保持最大的距离,从而增加标签表征之间的可辨别性,将标签表征作为所有同标签图像特征的类中心,为图像特征学习提供了极大便利。

    一种用于单标签图像检索的标签表征构建方法

    公开(公告)号:CN115964527A

    公开(公告)日:2023-04-14

    申请号:CN202310011361.5

    申请日:2023-01-05

    Abstract: 本发明提供了一种用于单标签图像检索的标签表征构建方法,包括:基于全连接神经网络确定单标签图像的标签表征,并基于标签表征平衡损失以及量化损失反向优化全连接神经网络;基于卷积神经网络提取单标签图像的图像特征,并与对应的标签表征之间的中心相似性损失来优化卷积神经网络;基于卷积神经网络提取待检索单标签图像特征,并符号化为二进制码,并基于二进制码实现对单标签图像的检索。通过确定单标签图像的单标签信息,同时,通过全连接神经网络生成各个标签的表征向量,并鼓励标签表征相互之间保持最大的距离,从而增加标签表征之间的可辨别性,将标签表征作为所有同标签图像特征的类中心,为图像特征学习提供了极大便利。

Patent Agency Ranking