-
公开(公告)号:CN114496112B
公开(公告)日:2023-10-31
申请号:CN202210069880.2
申请日:2022-01-21
Applicant: 内蒙古工业大学
Abstract: 本发明公开了一种基于多目标优化的抗乳腺癌药物成分智能量化方法。首先,在已有的化合物数据集上筛选影响ERα生物活性的主要分子描述符。然后,基于粒子群优化的神经网络构建化合物对ERα生物活性的定量预测模型。接着,以药物的吸收、分配、代谢、排泄和毒性(ADMET)的度量为目标,基于决策树构建化合物的ADMET特征的特性预测模型。最后,综合定量预测模型和特性预测模型,以帕累托(Pareto)优化理论为指导,构建基于多目标优化的遗传算法模型,找到满足最优目标的化合物(分子描述符的组合),再利用蒙特卡罗假设检验,对得到的最优化目标的化合物进行抽样统计,并以特定的置信度来确定化合物中不同分子描述符的最佳取值范围。
-
公开(公告)号:CN114496112A
公开(公告)日:2022-05-13
申请号:CN202210069880.2
申请日:2022-01-21
Applicant: 内蒙古工业大学
Abstract: 本发明公开了一种基于多目标优化的抗乳腺癌药物成分智能量化方法。首先,在已有的化合物数据集上筛选影响ERα生物活性的主要分子描述符。然后,基于粒子群优化的神经网络构建化合物对ERα生物活性的定量预测模型。接着,以药物的吸收、分配、代谢、排泄和毒性(ADMET)的度量为目标,基于决策树构建化合物的ADMET特征的特性预测模型。最后,综合定量预测模型和特性预测模型,以帕累托(Pareto)优化理论为指导,构建基于多目标优化的遗传算法模型,找到满足最优目标的化合物(分子描述符的组合),再利用蒙特卡罗假设检验,对得到的最优化目标的化合物进行抽样统计,并以特定的置信度来确定化合物中不同分子描述符的最佳取值范围。
-