一种基于深度学习的网络新闻配图匹配性检测方法

    公开(公告)号:CN109885796B

    公开(公告)日:2020-01-03

    申请号:CN201910075520.1

    申请日:2019-01-25

    Abstract: 本发明提供一种基于深度学习的网络新闻配图匹配性检测方法,该方法包括基于深度学习的新闻配图多描述生成;以及生成新闻配图描述的文字内容与新闻文字内容进行对比评分;对于生成新闻配图描述部分,采用卷积神经网络对新闻配图特征的提取,然后利用自然语言模型生成新闻配图的相关描述;对于评分体系部分,由于生成的图片描述和新闻文字内容长度和表达方式上的差异性,本发明提出解决方案,与改进的BLEU算法形成评分体系。评分体系对生成的图片描述和新闻文字内容进行对比评分,通过评分来判断图片与新闻内容是否相符。因此,可以更快速、更准确地发现图文不符的虚假信息,减少人工审核的时间,节省人力物力,净化网络环境。

    一种基于深度学习的网络新闻配图匹配性检测方法

    公开(公告)号:CN109885796A

    公开(公告)日:2019-06-14

    申请号:CN201910075520.1

    申请日:2019-01-25

    Abstract: 本发明提供一种基于深度学习的网络新闻配图匹配性检测方法,该方法包括基于深度学习的新闻配图多描述生成;以及生成新闻配图描述的文字内容与新闻文字内容进行对比评分;对于生成新闻配图描述部分,采用卷积神经网络对新闻配图特征的提取,然后利用自然语言模型生成新闻配图的相关描述;对于评分体系部分,由于生成的图片描述和新闻文字内容长度和表达方式上的差异性,本发明提出解决方案,与改进的BLEU算法形成评分体系。评分体系对生成的图片描述和新闻文字内容进行对比评分,通过评分来判断图片与新闻内容是否相符。因此,可以更快速、更准确地发现图文不符的虚假信息,减少人工审核的时间,节省人力物力,净化网络环境。

Patent Agency Ranking