-
公开(公告)号:CN114782779A
公开(公告)日:2022-07-22
申请号:CN202210487387.2
申请日:2022-05-06
Applicant: 兰州理工大学
IPC: G06V10/774 , G06K9/62 , G06N20/00
Abstract: 本发明公开了一种基于特征分布迁移的小样本图像特征学习方法及装置,在前期利用基类的数据结合梯度下降的方法,对嵌入模块以及分布学习模块的参数进行优化,后期进行分布矫正时,并不需要额外的参数设置;另外,通常假设特征表示中的每个维度都遵循高斯分布,这样高斯分布的均值和方差可以在类似的类别之间传递,减少偏差,以便这些类别的统计数据在足够的样本数下得到更好的估计,再利用分布矫正模型,对样本的分布进行矫正,从而更为精准的对新类样本进行分类。同时可以与任何分类器和特征提取器配对,无需额外的参数,解决了小样本图像分类中存在的原型偏差问题,改善了图像的分类效果,具有很高的实用价值。
-
公开(公告)号:CN114782752B
公开(公告)日:2023-09-05
申请号:CN202210487571.7
申请日:2022-05-06
Applicant: 兰州理工大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0895 , G06N3/096
Abstract: 本发明公开了一种基于自训练的小样本图像集成分类方法及装置,通过迁移基类数据的卷积特征提取,使用查询样本进行基分类器的自训练,不断地将伪标签集加到支持集扩充支持集,并运用到下一次基分类器自训练中,提高了基分类器自训练结果的可靠性。自训练过程中产生的基分类器,不断通过模型平均得到集成分类器,经过多次迭代自训练和分类器集成过程,得到最终的集成分类器,通过构建损失函数,使得基分类器在查询样本上有确定的、不同的预测,实现了基分类器的不同,解决现有小样本分类方法中,基于特征迁移和查询样本自训练的小样本图像集成分类中基学习器的多样性问题,对于提升图像的分类效果非常显著,具有很高的使用价值。
-
公开(公告)号:CN114782779B
公开(公告)日:2023-06-02
申请号:CN202210487387.2
申请日:2022-05-06
Applicant: 兰州理工大学
IPC: G06V10/774 , G06V10/764 , G06N20/00
Abstract: 本发明公开了一种基于特征分布迁移的小样本图像特征学习方法及装置,在前期利用基类的数据结合梯度下降的方法,对嵌入模块以及分布学习模块的参数进行优化,后期进行分布矫正时,并不需要额外的参数设置;另外,通常假设特征表示中的每个维度都遵循高斯分布,这样高斯分布的均值和方差可以在类似的类别之间传递,减少偏差,以便这些类别的统计数据在足够的样本数下得到更好的估计,再利用分布矫正模型,对样本的分布进行矫正,从而更为精准的对新类样本进行分类。同时可以与任何分类器和特征提取器配对,无需额外的参数,解决了小样本图像分类中存在的原型偏差问题,改善了图像的分类效果,具有很高的实用价值。
-
公开(公告)号:CN114782752A
公开(公告)日:2022-07-22
申请号:CN202210487571.7
申请日:2022-05-06
Applicant: 兰州理工大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于自训练的小样本图像集成分类方法及装置,通过迁移基类数据的卷积特征提取,使用查询样本进行基分类器的自训练,不断地将伪标签集加到支持集扩充支持集,并运用到下一次基分类器自训练中,提高了基分类器自训练结果的可靠性。自训练过程中产生的基分类器,不断通过模型平均得到集成分类器,经过多次迭代自训练和分类器集成过程,得到最终的集成分类器,通过构建损失函数,使得基分类器在查询样本上有确定的、不同的预测,实现了基分类器的不同,解决现有小样本分类方法中,基于特征迁移和查询样本自训练的小样本图像集成分类中基学习器的多样性问题,对于提升图像的分类效果非常显著,具有很高的使用价值。
-
-
-