-
公开(公告)号:CN109657230A
公开(公告)日:2019-04-19
申请号:CN201811316154.6
申请日:2018-11-06
Applicant: 众安信息技术服务有限公司
IPC: G06F17/27
Abstract: 本发明公开了一种融合词向量和词性向量的命名实体识别方法及装置,所述方法包括:对原始语料数据进行处理,获取序列训练数据以及序列测试数据;训练所述原始语料数据中的原文数据获取词向量和词性向量,并生成词向量矩阵和词性向量矩阵;利用所述序列训练数据以及词向量矩阵和词性向量矩阵对预先构建的模型进行训练,所述模型至少包括用于融合不同类型的信息的第一非线性转化层;将待测文本序列化生成序列待测数据后输入所述训练好的模型,获取序列化的预测结果;利用实体标签和其编号的对照词典的反向词典,将序列化的预测结果转化为可读的实体标签。本发明通过预先构建的模型对文本信息进行命名实体识别,能有效地提高命名实体识别的正确率。
-
公开(公告)号:CN109657230B
公开(公告)日:2023-07-28
申请号:CN201811316154.6
申请日:2018-11-06
Applicant: 众安信息技术服务有限公司
IPC: G06F40/295
Abstract: 本发明公开了一种融合词向量和词性向量的命名实体识别方法及装置,所述方法包括:对原始语料数据进行处理,获取序列训练数据以及序列测试数据;训练所述原始语料数据中的原文数据获取词向量和词性向量,并生成词向量矩阵和词性向量矩阵;利用所述序列训练数据以及词向量矩阵和词性向量矩阵对预先构建的模型进行训练,所述模型至少包括用于融合不同类型的信息的第一非线性转化层;将待测文本序列化生成序列待测数据后输入所述训练好的模型,获取序列化的预测结果;利用实体标签和其编号的对照词典的反向词典,将序列化的预测结果转化为可读的实体标签。本发明通过预先构建的模型对文本信息进行命名实体识别,能有效地提高命名实体识别的正确率。
-