一种面向长尾异构数据的联邦学习方法

    公开(公告)号:CN114429219B

    公开(公告)日:2025-02-11

    申请号:CN202111502142.4

    申请日:2021-12-09

    Abstract: 本发明公开了一种面向长尾异构数据的联邦学习方法包括如下步骤:步骤一、服务器端随机初始化全局模型w并将模型参数发给各个客户端,各个客户端利用收到的模型参数进行模型更新,并将更新后的模型参数上传至服务器端;步骤二、服务器端对收到的本地模型参数后进行聚合得到教师模型和学生模型;步骤三、服务器端对步骤二中得到的教师模型进行校准,让教师模型在无偏知识上进行学习,以此教出好的学生模型;步骤四、使用知识蒸馏将教师模型的无偏知识传递给学生模型,随后将学生模型发给各个客户端开始下一轮联邦训练。

    一种面向长尾异构数据的联邦学习方法

    公开(公告)号:CN114429219A

    公开(公告)日:2022-05-03

    申请号:CN202111502142.4

    申请日:2021-12-09

    Abstract: 本发明公开了一种面向长尾异构数据的联邦学习方法包括如下步骤:步骤一、服务器端随机初始化全局模型w并将模型参数发给各个客户端,各个客户端利用收到的模型参数进行模型更新,并将更新后的模型参数上传至服务器端;步骤二、服务器端对收到的本地模型参数后进行聚合得到教师模型和学生模型;步骤三、服务器端对步骤二中得到的教师模型进行校准,让教师模型在无偏知识上进行学习,以此教出好的学生模型;步骤四、使用知识蒸馏将教师模型的无偏知识传递给学生模型,随后将学生模型发给各个客户端开始下一轮联邦训练。

Patent Agency Ranking