-
公开(公告)号:CN115659281B
公开(公告)日:2023-10-27
申请号:CN202211461190.8
申请日:2022-11-16
Applicant: 之江实验室
IPC: G06F18/25 , G06F18/241 , G06N3/044 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种自适应加速算子融合的方法及装置,该方法包括:首先将神经网络抽象成计算图的形式;其次为图节点添加关键属性进行图赋权,并为赋权后计算图中的每个算子定义状态;然后基于包含状态信息的算子,设计基于深度强化学习的关键参与者算子节点自适应计算方法;最后基于关键参与者算子节点对计算图中的算子进行融合优化,对每一个计算图中的关键参与者算子最优融合方法进行探索,其余算子融合在关键参与者算子最优融合方案下进行探索,最终确定整个神经网络每个算子的最优融合方案。本发明能够大幅减少编译器搜索算子融合优化空间的时间,并且可面向更深更复杂的网络,具有较强的扩展性与重构性。
-
公开(公告)号:CN115659281A
公开(公告)日:2023-01-31
申请号:CN202211461190.8
申请日:2022-11-16
Applicant: 之江实验室
IPC: G06F18/25 , G06F18/241 , G06N3/044 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种自适应加速算子融合的方法及装置,该方法包括:首先将神经网络抽象成计算图的形式;其次为图节点添加关键属性进行图赋权,并为赋权后计算图中的每个算子定义状态;然后基于包含状态信息的算子,设计基于深度强化学习的关键参与者算子节点自适应计算方法;最后基于关键参与者算子节点对计算图中的算子进行融合优化,对每一个计算图中的关键参与者算子最优融合方法进行探索,其余算子融合在关键参与者算子最优融合方案下进行探索,最终确定整个神经网络每个算子的最优融合方案。本发明能够大幅减少编译器搜索算子融合优化空间的时间,并且可面向更深更复杂的网络,具有较强的扩展性与重构性。
-