-
公开(公告)号:CN116363418A
公开(公告)日:2023-06-30
申请号:CN202310240413.6
申请日:2023-03-06
IPC: G06V10/764 , G06V10/774 , G06V10/82
Abstract: 本说明书公开了一种训练分类模型的方法、装置、存储介质及电子设备。本方法通过确定各子网络层对应的输入维度中的无效维度,确定了对分类模型的输出结果无效的各子网络层对应的无效维度上各计算节点输出的结果,根据这些输出的结果确定第一损失,根据基于训练样本标注确定的第二损失以及该第一损失,确定总损失,以总损失最小训练分类模型,减少了各子网络层对应的无效维度上各计算节点输出的结果对分类模型的输出结果的影响,提高了分类模型的分类准确性。
-
公开(公告)号:CN115829005A
公开(公告)日:2023-03-21
申请号:CN202211580737.6
申请日:2022-12-09
Applicant: 之江实验室
IPC: G06N3/0464 , G06N3/08 , G06F18/24 , G06V10/82 , G06V10/764
Abstract: 本发明面向卷积神经分类网络的缺陷自动诊断与修复方法及装置,包括下列步骤:1)卷积神经分类网络预测重要性归一化;2)激活图重要性得分计算;3)正常样本激活图规律统计;4)分类错误样本激活图筛选;5)卷积神经分类网络自动化缺陷修复。本发明设计的是一种面向卷积神经分类网络的全自动缺陷诊断与修复方法,用于已经预训练的卷积神经分类网络模型缺陷检测与自动修复,能够有效提升深度卷积神经分类网络模型的分类性能。
-
公开(公告)号:CN115829005B
公开(公告)日:2023-06-27
申请号:CN202211580737.6
申请日:2022-12-09
Applicant: 之江实验室
IPC: G06N3/0464 , G06N3/08 , G06F18/24 , G06V10/82 , G06V10/764
Abstract: 本发明面向卷积神经分类网络的缺陷自动诊断与修复方法及装置,包括下列步骤:1)卷积神经分类网络预测重要性归一化;2)激活图重要性得分计算;3)正常样本激活图规律统计;4)分类错误样本激活图筛选;5)卷积神经分类网络自动化缺陷修复。本发明设计的是一种面向卷积神经分类网络的全自动缺陷诊断与修复方法,用于已经预训练的卷积神经分类网络模型缺陷检测与自动修复,能够有效提升深度卷积神经分类网络模型的分类性能。
-
-