基于改进粒子群算法的梯级水电站调度方法及系统

    公开(公告)号:CN116757446A

    公开(公告)日:2023-09-15

    申请号:CN202311017561.8

    申请日:2023-08-14

    Abstract: 本发明公开了一种基于改进粒子群算法的梯级水电站调度方法及系统,包括以下步骤:步骤一、获取梯级水电站基本信息;步骤二、建立水电站优化调度模型;步骤三、初始化粒子群参数;步骤四、初始化生成粒子种群位置和速度;步骤五、计算种群粒子的适应度值,记录个体最优位置与群体最优位置;步骤六、更新粒子群参数以及粒子运动速度;步骤七、引入高斯变异策略和莱维飞行机制二次更新粒子位置,对比两次更新,选择较优的粒子位置生成新的种群;步骤八、判断迭代次数是否达到最大寻优迭代次数或者寻优结果是否趋于稳定。本发明通过对传统粒子群算法进行改进,解决传统粒子群算法求解梯级水电站调度模型的问题,充分发挥水电站水能资源利用能力。

    一种基于滚动分解和深度学习的径流概率预测方法

    公开(公告)号:CN118760978A

    公开(公告)日:2024-10-11

    申请号:CN202410770895.0

    申请日:2024-06-14

    Abstract: 本发明涉及一种基于滚动分解和深度学习的径流概率预测方法。收集历史日径流数据序列;通过基于滚动分解策略的VMD对数据进行不存在未来信息的泄露的分解。将处理后的数据分为训练集和测试集;构建径流概率预测模型BiGRU‑NCQR‑KDE,设置超参数,以最小化损失函数为目标,在训练集上训练模型,得到训练好的径流概率预测模型;采集设定时间期间内的逐日径流量数据,对采集的数据进行预处理得到待预测数据集;将待预测数据集输入训练好的径流量预测模型,得到预测的径流概率密度曲线;完成基于滚动分解和深度学习的径流概率预测。本发明可以在避免信息泄露发生的同时获得精准和可靠的径流概率预测结果。

    基于改进粒子群算法的梯级水电站调度方法及系统

    公开(公告)号:CN116757446B

    公开(公告)日:2023-10-31

    申请号:CN202311017561.8

    申请日:2023-08-14

    Abstract: 本发明公开了一种基于改进粒子群算法的梯级水电站调度方法及系统,包括以下步骤:步骤一、获取梯级水电站基本信息;步骤二、建立水电站优化调度模型;步骤三、初始化粒子群参数;步骤四、初始化生成粒子种群位置和速度;步骤五、计算种群粒子的适应度值,记录个体最优位置与群体最优位置;步骤六、更新粒子群参数以及粒子运动速度;步骤七、引入高斯变异策略和莱维飞行机制二次更新粒子位置,对比两次更新,选择较优的粒子位置生成新的种群;步骤八、判断迭代次数是否达到最大寻优迭代次数或者寻优结果是否趋于稳定。本发明通过对传统粒子群算法进行改进,解决传统粒子群算法求解梯级水电站调度模型的问题,充分发挥水电站水能资源利用能力。

Patent Agency Ranking