-
公开(公告)号:CN114109859A
公开(公告)日:2022-03-01
申请号:CN202111252959.0
申请日:2021-10-27
Applicant: 中国计量大学
Abstract: 一种无流量传感的离心泵性能神经网络预测方法,包括以下步骤:步骤1.通过离心泵水力性能试验,获取不同转速下的离心泵流量、扬程、电机输入功率和工作转速频率;步骤2.建立不同转速下的离心泵流量–扬程、流量–功率多项式拟合方程,对流量–功率方程进行求导,判定其是否存在极值;步骤3.若功率不存在极值,以工作转速频率、电机输入功率作为输入参数,建立离心泵流量、扬程双神经网络预测模型;若功率存在极值,以工作转速频率、扬程作为输入参数,建立离心泵流量单神经网络预测模型;步骤4.将训练好的神经网络预测模型,植入离心泵控制器,基于实时测量数据,实现离心泵性能的准确预测。本发明保证设备运行的安全性和可靠性。
-
公开(公告)号:CN114109859B
公开(公告)日:2023-10-17
申请号:CN202111252959.0
申请日:2021-10-27
Applicant: 中国计量大学
Abstract: 一种无流量传感的离心泵性能神经网络预测方法,包括以下步骤:步骤1.通过离心泵水力性能试验,获取不同转速下的离心泵流量、扬程、电机输入功率和工作转速频率;步骤2.建立不同转速下的离心泵流量–扬程、流量–功率多项式拟合方程,对流量–功率方程进行求导,判定其是否存在极值;步骤3.若功率不存在极值,以工作转速频率、电机输入功率作为输入参数,建立离心泵流量、扬程双神经网络预测模型;若功率存在极值,以工作转速频率、扬程作为输入参数,建立离心泵流量单神经网络预测模型;步骤4.将训练好的神经网络预测模型,植入离心泵控制器,基于实时测量数据,实现离心泵性能的准确预测。本发明保证设备运行的安全性和可靠性。
-